http://doi.org/10.15407/visn2013.10.058
Visn. Nac. Akad. Nauk Ukr. 2013. (10): 58—70

N.A. Matvieieva
Institute of Cell Biology and Genetic Engineering of National Academy of Sciences of Ukraine, Kyiv

UNKNOWN ANTARCTICA: PLANTS DISCLOSE THEIR SECRETS

Abstract:
Antarctica is an outlying and hard-to-reach Earth continent. Antarctic flora consists of algae, mosses, lichens and only two species of vascular plants. Strong winds, low temperatures and air humidity levels, high levels of solar radiation make conditions for plant life extreme. Plants that adapt and survive in such an environment can be the targets of biotechnological research. Creating of Antarctic plants in vitro collection, which includes about 40 collection samples made it possible to use them to study the effects of abiotic stresses (salinity, high nitrogen content, the presence of highly toxic Cr(VI), low and high temperature). The use of these plants allowed to quantify the stressor effect on a number of parameters, including mass growth, storage sugar content. Such research allowed to determine features of the influence of abiotic stress and to compare the resistance to them of different plants. According to the research it was found that W. fontinaliopsis plants significantly differ from other studied plant species and are unique. The study of the genome of these plants has the potential to become the basis for the use of their valuable genetic material in biotechnology to create crops resistant to abiotic stresses.

Keywords: Antarctic plants, in vitro culture, abiotic stress, biotechnology.

 

Language of article: ukrainian.

References:

  1. Mosyakin S.L., Bezusko L.G., Mosyakin A.S. Ori-gins of native vascular plants of Antarctica: comments from a historical phytogeography viewpoint. Cytol. Genet. 2007. 41(5): 54–63. http://doi.org/10.3103/S009545270705009X
  2. Kyr’iachenko S.S., Kozerets’ka I.A., Rakusa-Sushchevs’ky S. Deschampsia antarctica: genetic and molecular-biological aspects of spreading in Antarctica. Cytol. Genet. 2005. 39(4): 75–80.
  3. Peat H.J., Clarke A., Convey P. Diversity and biogeography of the Antarctic flora. J. Biogeogr. 2007. 34(1): 132–46. http://doi.org/10.1111/j.1365-2699.2006.01565.x
  4. Convey P., Lewis Smith R.I. Geothermal bryophyte habitats in the South Sandwich Islands, maritime Antarctic. J. Veg. Sci. 2006. 17(4): 529–38. http://doi.org/10.1111/j.1654-1103.2006.tb02474.x
  5. Ochyra R., Lewis Smith R.I., Bednarek-Ochyra H. The Illustrated Moss Flora of Antarctica. (Cambridge Univ. Press, 2008).
  6. Bednarek-Ochyra H., Vána J., Ochyra R., Lewis Smith R.I. The liverwort flora of Antarctica. (Cracow: PAS, W. Szafer Institute of Botany, 2000).
  7. Convey P. Antarctic Ecosystems. In: Encyclopedia of Biodiversity (San Diego: Academic Press, 2001). V. 1. P. 171–184.
  8. Seppelt R.D., Green T.G. A bryophyte flora for Southern Victoria Land, Antarctica. New Zealand J. of Botany. 1998. 36: 617–35. http://doi.org/10.1080/0028825X.1998.9512599
  9. Convey P., Lewis Smith R.I., Hodgson D.A., Peat H.J. The flora of the South Sandwich Islands, with particular reference to the influence of geothermal heating. J. Biogeogr. 2000. 27(6): 1279–95. http://doi.org/10.1046/j.1365-2699.2000.00512.x
  10. Grolle R. The hepatics of the South Sandwich Islands and South Georgia. Br. Antarct. Surv. Bull. 1972. (28): 83–95.
  11. Lewis Smith R.I. The bryophyte flora of geo-thermal habitats on Deception Island, Antarctica. J. Hattori Bot. Lab. 2005. 97: 233–48.
  12. Skotnicki M.L., Selkirk P.M., Broady P.A. Dispersal of the moss Campylopus pyriformis on geothermal ground near the summit of Mount Erebus and Mount Melbourne, Victoria Land, Antarctica. Antarct. Sci. 2001. 13: 280–85. http://doi.org/10.1017/S0954102001000396
  13. Davis R.C. Environmental Factors Influencing Decomposition Rates in Two Antarctic Moss Communities. Polar Biol. 1986. 5(2): 95–103. http://doi.org/10.1007/BF00443381
  14. Ochyra R. The moss flora of King George Island, Antarctica. (Cracow: PAS, W. Szafer Institute of Botany, 1998).
  15. Parnikoza I., Kozeretska I., Kunakh V. Vascular Plants of the Maritime Antarctic: Origin and Adaptation. Am. J. Plant Sci. 2011. 2: 381–95. http://doi.org/10.4236/ajps.2011.23044
  16. Volkov R.A., Kozeretska I.A., Kyryachenko S.S., Andreev I.O., Maidanyuk D.N., Parnikoza I.Yu., Kunakh V.A. Molecular evolution and variability of ITS1–ITS2 in populations of Deschampsia antarctica from two regions of the maritime Antarctic. Polar Sci. 2010. 4(3): 469–78. http://doi.org/10.1016/j.polar.2010.04.011
  17. Convey P. Reproduction of Antarctic flowering plants. Antarctic Sci. 1996. 8(2): 127–34. http://doi.org/10.1017/S0954102096000193
  18. Corner R.W.M. Studies in Colobanthus quitensis (Kunth.) Bartl. and Deschampsia antarctica Desv. IV. Distribution and reproductive performance in the Argentine Island. Br. Antarct. Surv. Bull. 1971. (26): 41–50.
  19. Edwards J.A. Studies in Colobanthus quitensis (Kunth) Bartl. and Deschampsia antarctica Desv. VI. Reproductive performance on Signy Island. Br. Antarct. Surv. Bull. 1974. (28): 67–86.
  20. Longton R.E., Holdgate M.W. The South Sandwich Islands: IV. Botany. Br. Antarct. Surv. Sci. 1979. (94): 1–53.
  21. Giełwanowska I., Szczuka E., Bednara J., Górecki R. Anatomical Features and Ultrastructure of Deschampsia antarctica (Poaceae) Leaves from Different Growing Habitats. Ann. Bot. 2005. 96(6): 1109–19. http://doi.org/10.1093/aob/mci262
  22. Parnikoza I.Y., Loro P., Miryuta N.Y. et al. The influence of some environmental factors on cytological and biometric parameters and chlorophyll content of Deschampsia antarctica Desv. in the maritime Antarctic. Cytol. Genet. 2011. 45(3): 43–50. http://doi.org/10.3103/S0095452711030078
  23. Van de Staaij J., de Bakker N.V., Oosthoek A., Broekman R,, van Beem A,, Stroetenga M,, Aerts R,, Rozema J. Flavonoid concentrations in three grass species and a sedge grown in the field and under controlled environment conditions in response to enhanced UV-B radiation. J. Photochem. Photobiol. B. 2002. 66(1): 21–29. http://doi.org/10.1016/S1011-1344(01)00271-8
  24. Edwards J.A., Levis Smith R.I. Photosynthesis and respiration of Colobanthus quitensis and Deschampsia antarctica from the maritime Antarctic. Br. Antarct. Surv. Bull. 1988. (81): 43–63.
  25. Kennedy A.D. Photosynthetic response of the Antarctic moss Polytrichum alpestre Hoppe to low temperatures and freeze-thaw stress. Polar Biol. 1993. 13(4): 271–79. http://doi.org/10.1007/BF00238763
  26. http://www.antarctica.ac.uk/about_bas/publications/science_publications.php.
  27. Kappen L., Schroeter B. Plants and Lichenes in the Antarctic, their way of live and their relevance to soil formation. In: Geoecology of Antarctic ice-free coastal landscapes. Ecological studies. (L. Beyer, M. Bölter eds.). 2002. V. 154. P. 327–374. http://doi.org/10.1007/978-3-642-56318-8_18
  28. Ewart K.V., Lin Q., Hew C.L. Structure, function and evolution of antifreeze proteins. Cell. Mol. Life Sci. 1999. 55(2): 271–83. http://doi.org/10.1007/s000180050289
  29. Griffith M., Yaish M.W.F. Antifreeze proteins in overwintering plants: a tale of two activities. Trends Plant Sci. 2004. 9(8): 399–405. http://doi.org/10.1016/j.tplants.2004.06.007
  30. Houde M., Daniel C., Lachapelle M., Allard F., Laliberté S., Sarhan F. Immunolocalization of freezing-tolerance associated proteins in the cytoplasm and nucleoplasm of wheat crown tissues. Plant J. 1995. 8: 583–593. http://doi.org/10.1046/j.1365-313X.1995.8040583.x
  31. Griffith M., Lumb C., Wiseman S.B., Wisniewski M., Johnson R.W., Marangoni A.G. Antifreeze proteins modify the freezing process in plants. Plant Physiol. 2005. 138(1): 330–40. http://doi.org/10.1104/pp.104.058628
  32. Atici O., Nalbantoglu B. Antifreeze proteins in higher plants. Phytochem. 2003. 64(7): 1187–96. http://doi.org/10.1016/S0031-9422(03)00420-5
  33. Gunn T.C., Walton D.W.H. Storage carbohydrate production and overwintering strategy in a winter-green tussock grass on South Georgia (Sub-Antarctic). Polar Biol. 1985. 4(4): 237–42. http://doi.org/10.1007/BF00999768
  34. Liu N., Zhong N.Q., Wang G.L., Li L.J., Liu X.L., He Y.K., Xia G.X. Cloning and functional characterization of PpDBF1 gene encoding a DRE-binding transcription factor from Physcomitrella patens. Planta. 2007. 226(4): 827–38. http://doi.org/10.1007/s00425-007-0529-8
  35. Minami A., Nagao M., Ikegami K., Koshiba T., Arakawa K., Fujikawa S., Takezawa D. Cold acclimation in bryophytes: low-temperature-induced freezing tolerance in Physcomitrella patens is associated with increases in expression levels of stress-related genes but not with increase in level of endogenous abscisic acid. Planta. 2004. 220(3): 414–23. http://doi.org/10.1007/s00425-004-1361-z
  36. Kroemer K., Reski R., Frank W. Abiotic stress response in the moss Physcomitrella patens: evidence for an evolutionary alteration in signaling pathways in land plants. Plant Cell. Rep. 2004. 22. 864–70. http://doi.org/10.1007/s00299-004-0785-z
  37. Sun M.M., Li L.H., Xie H., Ma R.C., He Y.K. Differentially Expressed Genes under Cold Acclimation in Physcomitrella patens.  J. Biochem. Mol. Biol. 2007. 40(6): 986–1001. http://doi.org/10.5483/BMBRep.2007.40.6.986
  38. Gidekel M., Destefano-Beltrán L., García P,. Mujica L., Leal P., Cuba M., Fuentes L., Bravo L.A., Corcuera L.J., Alberdi M., Concha I., Gutiérrez A. Identification and characterization of three novel cold acclimation-responsive genes from the extremophile hair grass Deschampsia antarctica Desv. Extremophiles. 2003. 7(6): 459–69. http://doi.org/10.1007/s00792-003-0345-4
  39. Chew O., Lelean S., John U.P., Spangenberg G.C. Cold acclimation induces rapid and dynamic changes in freeze tolerance mechanisms in the cryophile Deschampsia antarctica E. Desv. Plant Cell Environ. 2012. 35: 829–37. http://doi.org/10.1111/j.1365-3040.2011.02456.x
  40. John U.P., Polotnianka R.M., Sivakumaran K.A., Chew O., Mackin L., Kuiper M.J., Talbot J.P., Nugent G.D., Mautord J., Schrauf G.E., Spangenberg G.C. Ice recrystallization inhibition proteins (IRIPs) and freeze tolerance in the cryophilic Antarctic hair grass Deschampsia antarctica E. Desv. Plant Cell Environ. 2009. 32: 336–48. http://doi.org/10.1111/j.1365-3040.2009.01925.x
  41. Zúñiga-Feest A., Ort D.R., Gutiérrez A., Gidekel M., Bravo L.A., Corcuera L.J. Light regulation of sucrose-phosphate synthase activity in the freezing-tolerant grass Deschampsia antarctica. Photosynth. Res. 2005. 83(1): 75–86. http://doi.org/10.1007/s11120-004-4277-3
  42. Bravo L.A., Griffith M. Characterization of anti-freeze activity in Antarctic plants. J. Exp. Bot. 2005. 56(414): 1189–96. http://doi.org/10.1093/jxb/eri112
  43. Doucet C.J., Byass L., Elias L., Worrall D., Smallwood M., Bowles D.J. Distribution and characterization of recrystallization inhibitor activity in plant and lichen species from the UK and maritime Antarctic. Cryobiol. 2000. 40(3): 218–27. http://doi.org/10.1006/cryo.2000.2241
  44. Lovelock C.E., Jackson A.E., Melick D.R., Seppelt R.D. Reversible Photoinhibition in Antarctic Moss during Freezing and Thawing. Plant Physiol. 1995. 109(3): 955–61.
  45. Montiel P.O., Cowan D.A., Heywood R.B. The possible role of soluble carbohydrates and polyols as cryoprotectants in Antarctic plants. In: Proc. Univer. Res. in Antarctica, 1989–1992. (Cambridge: Br. Antarct. Surv., 1993). P. 119–25.
  46. Zúñiga G.E., Alberdi M., Corcuera L.J. Non-structural carbohydrates in Deschampsia antarctica Desv. from South Shetland Islands, maritime Antarctic. Environ. Exp. Bot. 1996. 36(4): 393–99. http://doi.org/10.1016/S0098-8472(96)01026-X
  47. Zúñiga G.E., Alberdi M., Fernández J., Montiel P., Corcuera L. Lipid content in leaves of Deschampsia antarctica from the maritime Antarctic. Phytochem. 1994. 37(3): 669–72. http://doi.org/10.1016/S0031-9422(00)90335-2
  48. Robinson S.A., Wasley J., Popp M., Lovelock C.E. Desiccation tolerance of three moss species from continental Antarctica. Aust. J. Plant Physiol. 2000. 27(5): 379–88.
  49. Fowbert J.A. An experimental study of growth in relation to morphology and shoot water content in maritime Antarctic mosses.  New Phytol. 1996. 133(2): 363–73. http://doi.org/10.1111/j.1469-8137.1996.tb01903.x
  50. Melick D.R., Seppelt R.D. Seasonal investigation of soluble carbohydrates and pigment levels in Antarctic bryophytes and lichens. Bryologist. 1994. 97: 13–19. http://doi.org/10.2307/3243343
  51. Roser D.J., Melick D.R., Ling H.U., Seppelt R.D. Polyol and sugar content of terrestrial plants from continental Antarctica. Antarct. Sci. 1992. 4: 413–20. http://doi.org/10.1017/S0954102092000610
  52. Smirnoff N. The carbohydrates of bryophytes in relation to desiccation tolerance. J. Bryol. 1992. 17: 185–91. http://doi.org/10.1179/jbr.1992.17.2.185
  53. Seel W.E., Hendry G.A.F., Lee J.A. Effects of desiccation on some activated oxygen processing enzymes and antioxidants in mosses. J. Exp. Bot. 1992. 43(253): 1031–37. http://doi.org/10.1093/jxb/43.8.1031
  54. Davey M.C. Effects of short-term dehydration and rehydration on photosynthesis and respiration by Antarctic bryophytes. Environ. Exp. Bot. 1997. 37: 187–98. http://doi.org/10.1016/S0098-8472(96)01052-0
  55. Lewis Smith R.I. Biological and environmental characteristics of three cosmopolitan mosses dominant in continental Antarctica.  J. Veg. Sci. 1999. 10(2): 231–42. http://doi.org/10.2307/3237144
  56. Dupliy V.P., Matveyeva N.A., Shakhovskiy A.M. Ukrainskiy Antarkticheskiy (Zhurnal Ukrainian Antarctic Journal). 2011–2012. (10–11). 263–71. [in Russian].
  57. Ono K., Murasaki Y., Takamiya M. Induction and morphogenesis of cultured cells of bryophytes. J. Hattori Bot. Lab. 1988. 65(12): 391–401.
  58. Takami S., Yasunaga M., Takio S. et al. Establishment of suspension cultures of cells from the hornwort, Anthoceros punctatus L. J. Hattori Bot. Lab. 1988. 64(6): 429–35.
  59. Felix H. Calli, cell and plantlet suspension cultures of bryophytes. Candollea. 1994. 49(1): 141–58.
  60. Gang Y.Y., Du G.S., Shi D.J. et al. Establishment of in vitro regeneration system of the Atrichum mosses. Acta Bot. Sinica. 2003. 45: 1475–80.
  61. Sabovljević M., Bijelović A., Dragicević I. In vitro culture of mosses: Aloina aloides (K.F.Schultz) Kindb., Brachythecium velutinum (Hedw.) B.S. & G., Ceratodon purpureus (Hedw.) Brid., Eurhynchium praelongum (Hedw.) B.S. & G. and Grimmia pulvinata (Hedw.) Sm. Turk. J. Bot. 2003. 27: 441–46.
  62. Ward M. Callus tissues from the mosses Poly-trichum and Atrichum. Science. 1960. 132(3437): 1401–02. http://doi.org/10.1126/science.132.3437.1401
  63. Murashige T., Skoog F. A revised medium for rapid growth and bio assays with tobacco tissue cultures. Phys. Plant. 1962. 15(3): 473–97. http://doi.org/10.1111/j.1399-3054.1962.tb08052.x
  64. Chodhury S., Panda S.K. Toxic effects, oxi-dative stress and ultrastructural changes in moss Taxithelium nepalense (Schwaegr.) Broth. under chromium and lead phytotoxicity. Water, Air, Soil Pollution. 2005. 167: 73–90. http://doi.org/10.1007/s11270-005-8682-9
  65. Clemens S. Molecular mechanisms of plant metal tolerance and homeostasis. Planta. 2001. 212(4): 475–86. http://doi.org/10.1007/s004250000458
  66. Tashirev A.B., Romanovskaya V.A., Sioma I.B. Dopovidi NANU. 2008. (1): 169–76. [in Russian].
  67. Tashirev A.B., Matvieieva N.A., Romanovskaya V.A. Dopovidi NANU. 2007. (11): 70–75. [in Russian].
  68. Huner N.P.A., Öquist G., Hurry V.M., Krol M., Falk S., Griffith M. Photo-synthesis, photoinhibition and low temperature acclimation in cold tolerant plants. Photosynth. Res. 1993. 37(1): 19–39. http://doi.org/10.1007/BF02185436
  69. Hurry V.M., Keerberg O., Pärnik T., Gardeström P., Öquistet G. Cold-hardening results in increased activity of enzymes involved in carbon metabolism in leaves of winter rye (Secale cereale L.). Planta. 1995. 195(4): 554–62. http://doi.org/10.1007/BF00195715
  70. Tashiro T., Wardlaw I.F. The effect of high temperature on the accumulation of dry matter, carbon and nitrogen in the kernel of rice. Func. Plant Biol. 1991. 18(3): 259–65.
  71. Peng S., Huang J., Sheehy J.E., Laza R.C., Visperas R.M., Zhong X., Centeno G.S., Khush G.S., Cassman K.G. Rice yields decline with higher night temperature from global warming. PNAS. 2004. 101(27): 9971–75. http://doi.org/10.1073/pnas.0403720101
  72. Zakaria S., Matsuda T., Tajima S., Nitta Y. Effect of high temperature at ripening stage on the reserve accumulation in seed in some rice cultivars. Plant Prod. Sci. 2002. 5: 160–68. http://doi.org/10.1626/pps.5.160
  73. Stitt M., Hurry V. A plant for all seasons: alterations in photosynthetic carbon metabolism during cold acclimation in Arabidopsis. Curr. Opin. Plant Biol. 2002. 5: 199–206. http://doi.org/10.1016/S1369-5266(02)00258-3
  74. Guy C., Kaplan F., Kopka J., Selbig J., Hincha D.K. Metabolomics of temperature stress. Phys. Plant. 2008. 2(132): 220–35.
  75. Chatterton N.J., Harrison P.A., Bennett J.H., Thornley W.R. Fructan, starch and sucrose concentrations in crested wheatgrass and redtop as affected by temperature. Plant. Physiol. Biochem. 1987. 25: 617–23.
  76. Pollock C.J. Sucrose accumulation and the initiation of fructan biosynthesis in Lolium temulentum L. New Phytol. 1984. 96: 527–34. http://doi.org/10.1111/j.1469-8137.1984.tb03586.x