http://doi.org/10.15407/visn2012.12.028
Visn. Nac. Akad. Nauk Ukr. 2012. (12): 28-43

V.A. Pokrovskiy
Chuiko Institute of Surface Chemistry of National Academy of Sciences of Ukraine, Kyiv

DESORPTION MASS SPECTROMETRY: PHYSICS, PHYSICAL CHEMISTRY, SURFACE CHEMISTRY

Abstract:
More than 50 years ago in the Pisarzhevskiy Institute of Physical Chemistry of AS UkrSSR, under supervision of academician O.I. Brodskiy first in Ukraine the work started for development and applications of mass spectrometric analytical methods for physical and chemical investigation of organic molecules. This work resulted in creation and development in Ukraine the methods of field ionization and field desorption as nondestructive methods of ionization for mass spectrometry. Further development of mass spectrometric investigations in the Institute of Surface Chemistry of NAS of Ukraine (director — academician O.O. Chuiko) predetermined primary applications of temperature-programmed desorption and variants of laser desorption/ionization for further improvement of methods for studies on transformation of adsorbed molecules, first of all those biologically active, which occur on solid surface. Recently mass spectrometric investigations in Chuiko Institute of Surface Chemistry are concentrated on physics and chemistry of nanostructured systems by means of modern mass spectrometry.
Keywords:  mass spectrometry, field ionization, field desorption, fast atom bombardment, laser desorption/ionization, physical chemistry, surface chemistry.

 

Language of article: ukrainian

References:

  1. Brodskiy A.I. Physical Chemistry. Vol. 2. (Kharkiv, 1933). [in Russian].
  2. Brodskiy A.I. Chemistry of Isotopes. (Moscow, 1975). [in Russian].
  3. Goldenfeld I.V., Nazarenko V.A., Pokrovskiy V.A. Doklady Akademii Nauk USSR. 1965. 161: 861–64. [in Russian].
  4. Goldenfeld I.V., Nazarenko V.A., Pokrovskiy V.A. Field ionization theory. Int. J. Mass Spectrom. Ion Phys. 1970. 5: 337–47. http://doi.org/10.1016/0020-7381(70)85001-X
  5. Goldenfeld I.V., Korol E.N., Nazarenko V.A., Pokrovskiy V.A. The dynamic theory of field ionization. Adv. Mass Spectrom. 1971. 5: 337–40.
  6. Pokrovsky V.A., Goldenfeld I.V., Korol E.N. Temperature dependencies in field ionization. Int. J. Mass Spectrom. Ion Phys. 1973. 11(1): 1–9. http://doi.org/10.1016/0020-7381(73)80049-X
  7. Goldenfeld I.V., Bondarenko R.N., Golovatyy V.G. Pribory i Tekhnika Eksperimenta (Instruments and Experimental Techniques). 1973. (3): 166–68. [in Russian].
  8. Korol E.N., Lobanov V.V., Pokrovsky V.A. Field dissociation of molecules. I. Diatomic molecules. Int. J. Mass Spectrom. Ion Phys. 1975. 18: 229–36. http://doi.org/10.1016/0020-7381(75)85004-2
  9. Korol E.N., Lobanov V.V., Pokrovsky V.A. Field dissociation of molecules. II. Polyatomic molecules. Int. J. Mass Spectrom. Ion Phys. 1977. 24: 297–309. http://doi.org/10.1016/0020-7381(77)80037-5
  10. Korol' E.N., Lobanov V.V., Nazarenko V.A., Pokrovskiy V.A. Physical basis of the field of mass spectrometry. (Kyiv: Naukova Dumka, 1978). [in Russian].
  11. Pokrovskiy V.A., Glukhoy A.M. Pribory i Tekhnika Eksperimenta (Instruments and Experimental Techniques). 1980. (1): 187–89. [in Russian].
  12. Mischanchuk B.G., Pokrovskiy V.A., Shabel'nikov V.P., Korol E.N. Application of the retarded potential method in mass spectrometry for the investigation of mechanisms of field ion formation. Theoretical and Experimental Chemistry. 1982. 18(2): 172. http://doi.org/10.1007/BF00525827
  13. Pokrovskiy V.A., Mischanchuk B.G., Grabovyi P.N. Pribory i Tekhnika Eksperimenta (Instruments and Experimental Techniques). 1986. (6): 147. [in Russian].
  14. Pokrovskiy V.A., Borisevich V.I., Glukhoy A.M. Pribory i Tekhnika Eksperimenta (Instruments and Experimental Techniques). 1987. (1): 157. [in Russian].
  15. Pokrovskiy V.A. In: Autoelectronic and autoionic microscopy and spectroscopy. (Moscow, 2003). [in Russian].
  16. Pokrovskiy V.A., Mosin V.V. Fast atom bombardment in mass spectrometry: Method and applications. Theoretical and Experimental Chemistry. 1987. 23(1): 58. [in Russian]. http://doi.org/10.1007/BF00534977
  17. Verkin B.I., Yanson I.K., Sukhodub L.F., Teplitskiy A.B. Interactions of biomolecules. New experimental approaches and methods. (Kyiv: Naukova Dumka, 1985). [in Russian].
  18. Sukhodub L.F., Yanson I.K. Mass spectrometric studies of binding energies for nitrogen bases of nucleic acids in vacuo. Nature. 1976. 264: 245–47. http://doi.org/10.1038/264245a0
  19. Sukhodub L.F., Yanson I.K., Shelkovski V.S., Wierzchowski K.L. Mass-spectrometric investigations on hydration of nucleic acid components in vacuum. Biophys. Chem. 1982. 15(2): 149–55. http://doi.org/10.1016/0301-4622(82)80027-6
  20. Shelkovsky V.S., Stepanian S.G., Galetich I.K., Kosevich M.V., Adamowicz L. Modeling of recognition sites of nucleic acid bases and amide side chains of amino acids. Combination of experimental and theoretical approaches. Eur. Phys. J. D. 2002. 20(3): 421–31. http://doi.org/10.1140/epjd/e2002-00144-9
  21. Kosevich M.V. Low temperature secondary emission mass spectrometry. Cryobiological applications. Eur. J. Mass Spectrom. 1998. 4(4): 251–64. http://doi.org/10.1255/ejms.218
  22. Blagoi Yu. P., Sheina G.G., Ivanov A.Yu., Radchenko E.D., Kosevich M.V., Shelkovsky V.S., Boryak O.A. Rubin Yu.V. Low-temperature experimental studies in molecular biophysics: a review. Low Temp. Phys. 1999. 25(10): 747. http://doi.org/10.1063/1.593810
  23. Pashynskaya V.A., Kosevich M.V., Gomory A. Mechanistic investigation of the interaction between bisquaternary antimicrobial agents and phospholipids by liquid secondary ion mass spectrometry and differential scanning calorimetry. Rapid Commun. Mass Spectrom. 2002. 16(18): 1706–13. http://doi.org/10.1002/rcm.771
  24. Kosevich M.V., Shelkovsky V.S. A new type of graphite emitters for field ionization/field desorption mass spectrometry. Rapid Commun. Mass Spectrom. 1993. 7(9): 805–11. http://doi.org/10.1002/rcm.1290070905
  25. Kosevich M.V., Shelkovsky V.S., Boryak O.A., Orlov V.V. Bubble chamber model of fast atom bombardment induced processes. Rapid Commun. Mass Spectrom. 2003. 17(15): 1781–92. http://doi.org/10.1002/rcm.1121
  26. Shelkovskiy V.S., Kosevich M.V., Chagovets V.V. Mass-spektrometria. 2009. 6(4): 271–79. [in Russian]. 
  27. Kosevich M.V., Chagovets V.V., Severinovskaya O.V. Mass-spektrometria. 2011. 8(3): 201–08. [in Russian]. 
  28. Chagovets V.V., Kosevich M.V., Stepanian S.G. Noncovalent interaction of methylene blue with carbon nanotubes: theoretical and mass spectrometry characterization. J. Phys. Chem. C. 2012. 116(38): 20579. http://doi.org/10.1021/jp306333c
  29. Chuiko A.A., Gorlov Yu.I. Surface Chemistry of Silica. Surface Structure, Active Centers, Sorption Mechanisms. (Kyiv: Naukova Dumka, 1992). [in Russian]. 
  30. Chuyko A.A., Pokrovskiy V.A., Ustyuzhanin P.F. VINITI. No. 1326-B.80. 1989. [in Russian]. 
  31. Chuyko A.A., Nazarenko V.A., Pokrovskiy V.A. Visn. Nac. Akad. Nauk Ukr. 1989. (10): 31-41. [in Russian]. 
  32. Gunko V.M., Pokrovsky V.A. Temperature-programmed desorption mass spectrometry of butoxysilyl groups on silica surfaces. Int. J. Mass Spectrom. Ion Proc. 1994. 148: 45–54. http://doi.org/10.1016/0168-1176(95)04174-J
  33. Pokrovskiy V.A. Temperature-programmed mass spectrometry of biomolecules in surface chemistry studies. Rapid Commun. Mass Spectrom. 1995. 9: 588–90. http://doi.org/10.1002/rcm.1290090711
  34. Pokrovskiy V.A. Temperature-programmed desorption mass spectrometry. J. Therm. Anal. Calorim. 2000. 62: 407–15. http://doi.org/10.1023/A:1010177813557
  35. Gromovoy T.Yu., Palyanytsya B.B., Pokrovskiy V.A. et al. Interaction of Thermally Pre-treated Carbon Nanomaterials with Water Vapor. J. Nanosci. Nanotechnol. 2004. 4(1–2): 77–81. http://doi.org/10.1166/jnn.2004.041
  36. Chuyko A.A., Pokrovskiy V.A. In: Surface Chemistry of Silica . (Kyiv: Naukova Dumka, 2001). [in Russian]. 
  37. Pokrovskiy V.A., Bratushko Yu.I., Yakubovich T.N., Melnichenko G.N. Nonisothermal deoxygenation of cobalt complexes in free form and attached to aerosil. Theoretical and Experimental Chemistry. 1987. 23(3): 289. http://doi.org/10.1007/BF00531381
  38. Pokrovskiy V.A., Kulyk T.V., Galagan N.P., Chuiko A.A. Farmatsevtychnyy zhurnal. 1997. (5): 52–57. [in Russian]. 
  39. Pokrovskiy V.A., Galagan N.P., Chuiko A.A. Interaction of cells with nanoparticles. In: Surface chemistry in biomedical and environmental science (Eds. J.P. Blitz, V.M. Gunko). (Dodrecht: Springer, 2006). http://doi.org/10.1007/1-4020-4741-X_24
  40. Ischenko O.V. Mass spectrometry. (Kyiv, 1998). [in Ukrainian].
  41. Ischenko E.V., Matzui L.Yu., Gayday S.V. et al. Thermo-Exfoliated Graphite Containing CuO/Cu2(OH)3NO3:(Co2+/Fe3+) Composites: Preparation, Characterization and Catalytic Performance in CO Conversion. Mater. 2010. 3: 572–84. http://doi.org/10.3390/ma3010572
  42. Byeda O.A., Ischenko E.V. Method for calculating kinetic parameters of the desorption for the case of incompletely resolved peaks in studying carbon nanotubes and silicon carbide. Journal of Superhard Materials. 2010. 32(5): 346. http://doi.org/10.3103/S1063457610050060
  43. Byeda O., Ischenko E., Yatsimirsky V. Compensation effect on Cu-Co-Fe oxide catalysts of CO oxidation. Chem. Phys. Technol. Surf. (Hìmìâ, Fìzika ta Tehnologìâ Poverhnì). 2010. 1(3): 228–234.
  44. Byeda O.A., Ischenko E.V., Gromovoy T.Yu., Lisnyak V. Characterization of precursors of the catalysts of CO oxidation containing gerhardite phase Cu2(OH)3NO3. Global J. Phys. Chem. 2011. 2(1): 39–47.
  45. Ischenko E.V., Yatsimirsky A.V., Maksimov Yu.V. et al. Physicochemical, structural and catalytic properties of CuO/Cu2(OH)3NO3:(Co:Fe) composites. Global J. Phys. Chem. 2011. 2(3): 255–63.
  46. Pokrovskiy V.A. Mass spectrometry of nanostructured systems. Surface (Poverkhnost`). 2010. (2): 63–93. [in Russian]. 
  47. Shmigol I.V., Alekseev S.A., Lavrynenko O.Yu. et al. Chemically modified porous silicon for laser desorption/ionization mass spectrometry of ionic dyes. J. Mass Spectrom. 2009. 44(8): 1234–40.  http://doi.org/10.1002/jms.1604
  48. Shmygol' I.V., Pokrovskiy V.A., Vodyanitskiy A.I., Kozyrev Yu.N. In: Physical chemistry of nanomaterials and supramolecular structures. (Kyiv: Naukova Dumka, 2007). [in Russian].