Visn. Nac. Akad. Nauk Ukr. 2016. (7):19-26
https://doi.org/10.15407/visn2016.07.019

Yu.VSlyusarenko 1,2, A.GSotnikov 1,2

1 Akhiezer Institute for Theoretical Physics, National Science Center «Kharkov Institute of Physics and Technology».Kharkiv
2 Karazin Kharkiv National University,Kharkiv

UNIQUE EFFECTS IN A RESPONSE OF ULTRACOLD ATOMIC GASES OF ALKALI-METAL ATOMS IN THE STATE WITH A BOSE-EINSTEIN CONDENSATE TO THE PERTURBATION BY AN EXTERNAL ELECTROMAGNETIC FIELD

Abstract: 
We demonstrate some peculiar results in the phenomenon of a response of ultracold quantum gases in the state with a Bose-Einstein condensate. It is shown that, basing on the general theoretical approach proposed by authors, it is possible to study not only slowing of optical but also microwave electromagnetic pulses to extremely low values of the group velocity. The phenomenon of ultraslow electromagnetic waves can be used for detection and precise measurements of magnetic fields, high-quality filtering of pulses and more detailed analysis of atomic spectra. As a remarkable example of a potential “curious” application, we analyze a principal possibility of acceleration of relativistic particles by ultracold gases in the presence of inverse occupancy of quantum states.
Keywords: Bose-Einstein condensate, ultracold quantum gases, slowing and filtering of pulses, acceleration of particles.

Language of article: ukrainian

 
1. Pethick C.J., Smith H. Bose-Einstein Condensation in Dilute Gases. (Cambridge University Press, 2002).
2. Pitaevskii L.P., Stringari S. Bose-Einstein Condensation. (Clarendon Press, Oxford, 2003).
3. Anderson M.H., Ensher J.R., Matthews M.R., Wieman C.E., Cornell E.A. Observation of Bose-Einstein condensation in a dilute atomic vapor. Science. 1995. 269(5221): 198 
http://doi.org/10.1126/science.269.5221.198
4. Davis K.B., Mewes M.O., Andrews M.R., van Druten N.J., Durfee D.S., Kurn D.M., Ketterle W. Bose-Einstein condensation in a gas of sodium atoms. Phys. Rev. Lett. 1995. 75: 3969. http://doi.org/10.1103/PhysRevLett.75.3969
5. Hau L., Harris S., Dutton Z., Behroozi C. Light speed reduction to 17 metres per second in an ultracold atomic gas. Nature. 1999. 397: 594.
http://doi.org/10.1038/17561
6. Fleischhauer M., Imamoglu A., Marangos J.P. Electromagnetically induced transparency: Optics in coherent media. Rev. Mod. Phys. 2005. 77(2): 633. http://doi.org/10.1103/RevModPhys.77.633
7. Peletminskii S.V., Slyusarenko Y.V. Second quantization method in the presence of bound states of particles. J. Math. Phys. 2005. 46: 022301.
http://doi.org/10.1063/1.1812359
8. Slyusarenko Y., Sotnikov A. Green-function method in the theory of ultraslow electromagnetic waves in an ideal gas with Bose-Einstein condensates. Phys. Rev. A. 2008. 78(5): 053622.http://doi.org/10.1103/PhysRevA.78.053622
9. Boychenko N.P., Slyusarenko Y. Coexistence of photonic and atomic Bose-Einstein condensates in ideal atomic gases. Condens. Matter Phys. 2015. 18(4): 43002.http://doi.org/10.5488/CMP.18.43002
10. Slyusarenko Y., Sotnikov A. Magnetic ordering of three-component ultracold fermionic mixtures in optical lattices. Phys. Lett. A. 2009. 373: 1392.
http://doi.org/10.1016/j.physleta.2009.02.017
11. Slyusarenko Y.V., Sotnikov A.G. Feasibility of using Bose-Einstein condensates for filtering optical pulses. Low Temp. Phys. 2010. 36(8): 671.
http://doi.org/10.1063/1.3490659
12. Slyusarenko Y., Sotnikov A. Propagation of relativistic charged particles in ultracold atomic gases with Bose-Einstein condensates. Phys. Rev. A. 2011. 83(2): 023601.http://doi.org/10.1103/PhysRevA.83.023601
13. Braun S., Ronzheimer J.P., Schreiber M., Hodgman S.S., Rom T., Bloch I., Schneider U. Negative absolute temperature for motional degrees of freedom. Science. 2013. 339(615): 52.http://doi.org/10.1126/science.1227831