Visn. Nac. Akad. Nauk Ukr. 2019. (12): 33-42
https://doi.org/10.15407/visn2019.12.033

S.A. Kirillov
Joint Department оf Electrochemical Energy Systems of the National Academy of Sciences of Ukraine, Kyiv

RECHARGEABLE WORLD
Nobel Prize in Chemistry 2019

On October 9, the Nobel Committee at the Royal Swedish Academy of Sciences announced the decision to award the 2019 Nobel Prize in Chemistry to the three originators of lithium-ion batteries, John Goodenough and Michael Stanley Whittingham from USA and Akira Yoshino from Japan. As noted in the official press release of the Nobel Committee, their works have created the right conditions for a wireless and fossil fuel-free society and brought the greatest benefit to humankind.

Language of article: ukrainian

Full text (PDF)

 

REFERENCES

  1. Researchers of Nobel class: Citation Laureates 2019. World-changing research should be seen, shared and celebrated. https://clarivate.com/webofsciencegroup/solutions/citation-laureates/
  2. Press release: The Nobel Prize in Chemistry 2019. https://www.nobelprize.org/prizes/chemistry/2019/press-release/
  3. Whittingham M.S., Huggins R.A. Measurement of sodium ion transport in beta alumina using reversible solid electrodes. J. Chem. Phys. 1971. 54: 414. DOI: https://doi.org/10.1063/1.1674623
  4. Campus and Community Fete Nobel Laureate. https://www.binghamton.edu/news/story/2098/campus-and-community-fete-nobel-laureate/?ref=homepage
  5. Whittingham M.S. The hydrated intercalation complexes of the layered disulfides. Mater. Res. Bull. 1974. 9: 1681. DOI: https://doi.org/10.1016/0025-5408(74)90162-7
  6. Whittingham M.S., Gamble Jr. F.R. The lithium intercalates of the transition metal dichalcogenides. Mater. Res. Bull. 1975. 10: 363. DOI: https://doi.org/10.1016/0025-5408(75)90006-9
  7. Whittingham M.S. Preparation of stoichiometric titanium disulfide. 1977. US Patent 4007055.
  8. Whittingham M.S. Chalcogenide battery. 1977. US Patent 4009052.
  9. Whittingham M.S. Electrical energy storage and intercalation chemistry. Science. 1976. 192: 1126. DOI: https://doi.org/10.1126/science.192.4244.1126
  10. Whittingham M.S. Chemistry of intercalation compounds: Metal guests in chalcogenide hosts. Progr. Solid State Chem. 1978. 12: 41. DOI: https://doi.org/10.1016/0079-6786(78)90003-1
  11. Whittingham M.S. Lithium batteries and cathode materials. Chem. Rev. 2004. 104: 4271. DOI: https://doi.org/10.1021/cr020731c
  12. Nobel laureate who struggled with dyslexia https://www.tellerreport.com/news/2019-10-09---nobel-laureate-who-struggled-with-dyslexia-.Bkb2IHPo_H.html
  13. To Be a Genius, Think Like a 94-Year-Old. https://www.nytimes.com/2017/04/07/opinion/sunday/to-be-a-genius-think-like-a-94-year-old.html
  14. Goodenough J.B. Magnetism and the chemical bond. N.Y.: Interscience-Wiley, 1963
  15. John Goodenough. https://www.me.utexas.edu/faculty/faculty-directory/goodenough
  16. Mizushima K., Jones P.C., Wiseman P.J., Goodenough J.B. LixCoO2 (0<x<-1): A new cathode material for batteries of high energy density. Mater. Res. Bull. 1980. 15: 783. DOI: https://doi.org/10.1016/0025-5408(80)90012-4
  17. Goodenough J.B., Mizushima K., Wiseman P.J. Electrochemical cell and method of making ion conductors for said cell. 1980. Eur. Patent 0017400B1.
  18. Padhi A.K., Nanjundaswamy K.S., Goodenough J.B. Phospho-olivines as positive-electrode materials for rechargeable lithium batteries. J. Electrochem. Soc. 1997. 144: 1188. DOI: https://doi.org/10.1149/1.1837571
  19. UT Professor Who Pioneered Lithium-Ion Batteries Becomes Oldest Nobel Laureate. https://www.nbcdfw.com/news/tech/UT-Professor-Who-Pioneered-Lithium-Ion-Batteries-Becomes-Oldest-Nobel-Laureate-562668231.html
  20. Book on candles that inspired Nobel chemist Yoshino sells out. http://www.asahi.com/ajw/articles/AJ201910110041.html
  21. Николай Федорович Гамалея. http://www.gamaleya.ru/content/lib/achievement_history/gamaleya_bio/biography1.htm
  22. Profile of Akira Yoshino, Dr.Eng., and Overview of His Invention of the Lithium-ion Battery. https://www.asahi-kasei.co.jp/asahi/en/r_and_d/interview/yoshino/pdf/lithium-ion_battery.pdf
  23. Yoshino A. The birth of the lithium-ion battery. Angew. Chem. Int. Ed. 2012. 51: 2. DOI: https://doi.org/10.1002/anie.201105006
  24. Yazami R., Touzain Ph. A reversible graphite-lithium negative electrode for electrochemical generators. J. Power Sources. 1983. 9: 365. DOI: https://doi.org/10.1016/0378-7753(83)87040-2
  25. Yoshino A., Sanechika K., Nakajima T. Secondary Battery. 1985. Japanese Patent 1989293; US Patent 4668595.
  26. Charles Stark Draper Prize. https://en.wikipedia.org/wiki/Charles_Stark_Draper_Prize
  27. Chemistry Nobel Goes to Lithium Battery Scientists, Omits Rachid Yazami. https://www.moroccoworldnews.com/2019/10/284390/chemistry-nobel-lithium-battery-scientists-rachid-yazami/
  28. Pillot C. The rechargeable battery market and main trends 2016–2025. 32nd Int. battery seminar and exhibition. March 20, 2017. http://cii-resource.com/cet/FBC-TUT8/Presentations/Pillot_Christophe.pdf
  29. Blomgren G.E. The development and future of lithium ion batteries. J. Electrochem. Soc. 2017. 164: A5019. DOI: https://doi.org/10.1149/2.0251701jes
  30. Thackeray M.M., Johnson C.S., Amine K., Kim J. Lithium metal oxide electrodes for lithium cells and batteries. 2004. US patents 6677082 B2, 6680143 B2.
  31. Gomollón-Bel F. Ten chemical innovations that will change our world: IUPAC identifies emerging technologies in chemistry with potential to make our planet more sustainable. Chemistry Internat. 2019. 41: 12. DOI: https://doi.org/10.1515/ci-2019-0203
  32. Kirillov S.A. Our Demyanitch (to the 80th anniversary of Corresponding Member of NAS of Ukraine V.D. Prysyazhniy). Visn. Nac. Acad. Nauk. Ukr. 2015. (3): 98.
  33. Pokhodenko V.D., Koshechko V.G., Barchuk V.I. The emergence of EMF in single-electron redox reactions of stable radicals. Theor. Exp. Chem. 1976. 12: 276.
  34. Pokhodenko V.D., Koshechko V.G., Barchuk V.I., Isagulov K.S. Chemical power supply. 1983. US Patent 4397922.
  35. Kirillov S.A. Electrode materials and electrolytes for high-rate electrochemical energy systems: A review. Theor. Exp. Chem. 2019. 55: 73. DOI: https://doi.org/10.1007/s11237-019-09598-2
  36. Posudievsky O.Yu., Biskulova S.A., Pokhodenko V.D. New polyaniline–MoO3 nanocomposite as a result of direct polymer intercalation. J. Mater. Chem. 2002. 12: 1446. DOI: https://doi.org/10.1039/B107909C
  37. Posudievsky O.Yu., Kozarenko O.A., Dyadyun V.S., Jorgensen S.W., Koshechko V.G., Pokhodenko V.D. Hybrid two- and three-component host-guest nanocomposites and method for manufacturing the same. 2009. US Patent 8148455.
  38. Posudievsky O.Yu., Khazieieva O.A., Koshechko V.G., Pokhodenko V.D. Preparation of graphene oxide by solvent-free mechanochemical oxidation of graphite. J. Mater. Chem. 2012. 22: 12465. DOI: https://doi.org/10.1039/C2JM16073K
  39. Khomenko V.G., Barsukov V.Z., Doninger J.E., Barsukov I.V. Lithium-ion batteries based on carbon–silicon–graphite composite anodes. J. Power Sources. 2007. 165: 598. DOI: https://doi.org/10.1016/j.jpowsour.2006.10.059
  40. Balducci A., Jeong S.S., Kim G.T., Passerini S., Winter M., Schmuck M., Appetecchi G.B., Marcill R., Mecerreyes D., Barsukov V., Khomenko V., Cantero I., De Meatza I., Holzapfel M., Tran N. Development of safe, green and high performance ionic liquids-based batteries (ILLIBATT project). J. Power Sources. 2011. 196: 9719. DOI: https://doi.org/10.1016/j.jpowsour.2011.07.058
  41. Khomenko V.G., Barsukov V.Z., Katashinskii A.S. The catalytic activity of conducting polymers toward oxygen reduction. Electrochim. Acta. 2005. 50: 1675. DOI: https://doi.org/10.1016/j.electacta.2004.10.024
  42. Xu W., Ledin P.A., Shevchenko V.V., Tsukruk V.V. Architecture, assembly, and emerging applications of branched functional polyelectrolytes and poly(ionic liquid)s. ACS Appl. Mater. Interfaces. 2015. 7: 12570. DOI: https://doi.org/10.1021/acsami.5b01833
  43. Belous A.G., Kobilyanskaya S.D. Oxide lithium conducting solid electrolytes. Kyiv: Naukova Dumka, 2018.