Visn. Nac. Akad. Nauk Ukr .2014. (10): 30—41
https://doi.10.15407/visn2014.10.030

I.S. Chekman1, V.A. Pokrovskiy2, D.S. Savchenko1
1Bogomoletz National Medical University, Kyiv
2Chuiko Institute of Surface Chemistry of National Academy of Sciences of Ukraine, Kyiv

OPTICAL PROPERTIES OF NANOMATERIALS

Abstract: Literature data and the results of authors’ researches concerning the optical properties of nanomaterials are summarized in the review. We consider quantum size effects of nanoparticles in resonant-tunneling diodes, quantum-dot lasers and hypersensitive photodetectors. It was given an account of possible metal nanoparticles use as a new class labels in the study of biological processes in various tissues, due to the intensity of light scattering by nanometals that significantly exceed the brightest emission intensity of fluorescent molecules. In addition, the optical properties of fullerene C60 were considered, with their possible applications in medical practice.

Keywords: optical properties, quantum size effects, optical tags, metal nanoparticles, carbon nanomaterials, nanocomposites.

Language of article: ukrainian.

References:

  1. Paton B.Ye., Moskalenko V.F., Chekman I.S.Visn. Nac. Akad. Nauk Ukr. 2009. (6): 76-80.
  2. Abramov N.V., Bagatskaya A.N., Belyakova L.A. Nanomaterials and nanocomposites in medicine, biology, ecology (Kyiv: Naukova Dumka, 2011).
  3. Mazurenko V.V., Rudenko A.N., Mazurenko V.G. The nanoparticles, nanomaterials, nanotechnology (Ekaterinburg, 2009).
  4. Nosach L.V., Savchenko D.S., Vlasenko O.M. Ukrayinskiy naukovo-medychnyy zhurnal (Ukrainian Scientific Medical Journal). 2011. (4): 78.
  5. Kreibig U., Vollmer M. Optical Properties of Metal Clusters. (Springer, 1995). http://dx.doi.org/10.1007/978-3-662-09109-8
  6. Serov I.N., Margolin V.I., Zhabrev V.A. Inzhenernaya fizika (Engineering Physics). 2004. (1): 18–32.
  7. Shen M., Cao W. Electronic band-structure engineering of GaAs/AlxGa1-xAs quantum well superlattices with substructures. Mater. Eng. B. 2003. 103: 122–27. http://dx.doi.org/10.1016/S0921-5107(03)00159-4
  8. Romeira B., Javaloyes J., Ironside C. Excitability and optical pulse generation in semiconductor lasers driven by resonant tunneling diode photo-detectors. Opt. Express. 2013. 21(18): 20931–40. http://dx.doi.org/10.1364/OE.21.020931
  9. Cheng H.C., Lee C.P. Investigation of quantum dot passively mode-locked lasers with excited-state transition. Opt Express. 2013. 21(22): 26113–22. http://dx.doi.org/10.1364/OE.21.026113
  10. Cheng S.H., Weng T.M., Lu M.L., Tan W.-C., Chen J.-Y., Chen Y.-F. All carbon-based photodetectors: an eminent integration of graphite quantum dots and two dimensional graphene. Sci. Rep. 2013. 2694. doi: 10.1038/srep02694. http://dx.doi.org/10.1038/srep02694
  11. Ōsawa E. Looking back the most beautiful molecule C60: after quarter century of discovery. Visn. Nac. Akad. Nauk Ukr. 2009. (9): 27-35. http://www.visnyk-nanu.org.ua/en/node/1118.  
  12. Yang G., Si Y., Su Z. Theoretical study on the chiroptical optical properties of chiral fullerene C60 derivative. J. Phys. Chem. A. 2011. 115(46): 13356–63. http://dx.doi.org/10.1021/jp204860x
  13. Shen Y., Nakanishi T. Fullerene assemblies toward photo-energy conversions. Phys. Chem. Chem. Phys. 2014. 16(16): 7199–204. http://dx.doi.org/10.1039/c4cp00221k
  14. Chekman I.S., Ulberh Z.R., Malanchuk V.O. Nanosciences, Nanobiology, Nanopharmaceutics (Kyiv, Poligraf+, 2012).
  15. Pokrovskiy V.O., Grebenyuk A.G., Demianenko E.M., Kuts V.S., Karpenko O.B., Snegir S.V., Kartel N.T. Laser desorption/ionization of fullerenes: experimental and theoretical study. Chem. Phys. Technol. Surf. 2013. 4(1): 78–91
  16. Snegir S.V., Gromovyi T.Y., Pokrovskiy V.O. Laser desorption/ionization mass spectrometry of fullerene C60 deposited onto the polished steel and silicon targets. Phys. Met. Adv. Technol. 2006. 28: 255–261.
  17. Asada R., Liao F., Saitoh Y. Photodynamic anti-cancer effects of fullerene [C60]-PEG complex on fibrosarcomas preferentially over normal fibroblasts in terms of fullerene uptake and cytotoxicity. Mol. Cell. Biochem. 2014. 390(1–2): 175–184. http://dx.doi.org/10.1007/s11010-014-1968-8
  18. Shi J., Yu X., Wang L. PEGylated fullerene/iron oxide nanocomposites for photodynamic therapy, targeted drug delivery and MR imaging. Biomater. 2013. 34(37): 9666–77. http://dx.doi.org/10.1016/j.biomaterials.2013.08.049
  19. Ostroukhov N., Sleptsov V., Tyanhynskyy A. Fotonika. 2011. 29(5): 38–41.
  20. Ivanova V.S. Introduction to the interdisciplinary nanomaterials (Moscow, Sains-Press, 2005).
  21. Dhawan A., Muth J. Plasmon resonances of gold nanoparticles incorporated inside an optical fibre matrix. Nanotechnol. 2006. 17: 2504–11. http://dx.doi.org/10.1088/0957-4484/17/10/011
  22. Chien-Ying T., Tien-Li C., Ramesh U. Electrical detection of protein using gold nanoparticles and nanogap electrodes. Jpn. J. Appl. Phys. 2005. 44: 5711–16. http://dx.doi.org/10.1143/JJAP.44.5711
  23. Yershov B.G. Rossiyskiy khimicheskiy zhurnal. 2001. 45(3): 20–30.
  24. Krasteva N., Guse B., Besnard I. Gold nanoparticle/PPI-dendrimer based chemiresistors. Vapor-sensing properties as a function of the dendrimer size. Sens. Actuat. B. 2003. 92(1–2): 137–43. http://dx.doi.org/10.1016/S0925-4005(03)00250-8
  25. Haes A.J., Hall W.P., Chang L. A localized surface plasmon resonance biosensor: first steps toward an assay for Alzheimer’s disease. Nano Lett. 2004. 4(6): 1029–34. http://dx.doi.org/10.1021/nl049670j
  26. Savicheva I.S. Resonant scattering of radiation by nanoparticles of different shapes (Samara, 2013).
  27. Lim S., Mar W., Matheu P. et al. Photocurrent spectroscopy of optical absorption enhancement in silicon photodiodes via scattering from surface plasmonpolaritons in gold nanoparticles. J. Appl. Phys. 2007. 101. doi: 10.1063/1.2733649. http://dx.doi.org/10.1063/1.2733649
  28. Seok-Soon K., Seok-In N., Jang J. et al. Plasmon enhanced performance of organic solar cells using electrodeposited Ag nanoparticles. Appl. Phys. Lett. 2008. 93. doi: 10.1063/1.2967471. http://dx.doi.org/10.1063/1.2967471
  29. Proshkin V.A. PhD (Phys.). 2008. 
  30. Kapustianyk V. Nanoferroics: new effects, properties, possibilities. Journal of Physical Studies. 2013. 17(1): 1702–22.
  31. Vladimirov A.G., Korovin S.B., Pustovoy V.I. In: Rusnanotech-08: Proc. I Int. Conf. (3–5 Dec., 2008,Moscow).
  32. Dudar S.S., Sveshnikova Ye.B., Yermolayev V.L. Optika i Spektroskopiya (Optics and Spectroscopy). 2010. 109(4): 605–17.
  33. Chekman Í.S., Radzíêvska S.O. Slovnik-dovídnik z nanonauki (Kyiv: Zadruga, 2013).
  34. Liao X., Chen Y., Qin M. et al. Au-Ag-Au double shell nanoparticles-based localized surface plasmon resonance and surface-enhanced Raman scattering biosensor for sensitive detection of 2-mercapto-1-methylimidazole. Talanta. 2013. 117: 203–08. http://dx.doi.org/10.1016/j.talanta.2013.08.051
  35. Qu L.L., Song Q.X., Li Y.T. et al. Fabrication of bimetallic microfluidic surface-enhanced Raman scattering sensors on paper by screen printing. Anal. Chim. Acta. 2013. 792: 86–92. http://dx.doi.org/10.1016/j.aca.2013.07.017
  36. Liu C., Sahoo S., Tsao M. Acridine orange coated magnetic nanoparticles for nucleus labeling and DNA adsorption. Colloids Surf. B. 2013. 115: 150–56. http://dx.doi.org/10.1016/j.colsurfb.2013.11.003
  37. Rogers N., Claire S., Harris R. et al. High coating of Ru(II) complexes on gold nanoparticles for single particle luminescence imaging in cells. Chem. Commun. (Camb). 2014. 50(5): 617–19. http://dx.doi.org/10.1039/C3CC47606E
  38. Liu G., Long Y., Choi Y. et al. Quantized plasmon quenching dips nanospectroscopy via plasmon resonance energy transfer. Nature Methods. 2007. 4: 1015–17. http://dx.doi.org/10.1038/nmeth1133