Visn. Nac. Akad. Nauk Ukr. 2015. (7): 53-64

O.Yu. Gorobets
Institute of Magnetism of NAS and MES of Ukraine, Kyiv


The common genetic mechanism of biomineralization of biogenic magnetic nanoparticles (nanocrystals of magnetite, maghemite and greigite) in unicellular and multicellular organisms is analyzed in this paper and their functions are discussed as natural strong magnets.

Keywordsgradient magnetic force, effective magnetic susceptibility, magnetic capture, genetic mechanism of biomineralization.


Language of article: ukrainian


  1. Pavlovich N.V. Magnitnaya vospriimchivost’ organizmov. (Minsk: Nauka i tekhnika, 1985). P. 111.
  2. Gorobets Y.I., Gorobets O.Y. Statistical characteristics of trajectories of diamagnetic unicellular organisms in a magnetic field. Progress in Biophysics and Molecular Biology. 2015. 117(1): 125–28.
  3. Sakaguchi T., Burgess J.G., Matsunaga T. Magnetite formation by a sulphate-reducing bacterium. Nature. 1993. 365: 47–49.
  4. Diebel C.E., Proksch R., Green C.R. Magnetite defines a vertebrate magnetoreceptor. Nature. 2000. 406: 299–302.
  5. Ritz T., Thalau P., Phillips J.B. Resonance effects indicate a radical-pair mechanism for avian magnetic compass. Nature. 2004. 429: 177–79.
  6. Mann S., Sparks N.H.C., Frankel R.B. Biomineralization of ferromagnetic greigite (Fe3S4) and pyrite (FeS2) in a magnetotactic bacterium. Nature. 1990. 343(18): 258–61.
  7. Gordon, L.M., Joester D. Nanoscale chemical tomography of buried organic-inorganic interfaces in the chiton tooth. Nature. 2011. 469: 194–97.
  8. Baker R.R., Mather J.G., Kennaugh J.H. Magnetic bones in human sinuses. Nature. 1983. 301: 78–80.
  9. Blakemore R.P. Magnetotactic bacteria. Science. 1975. 190: 377–79.
  10. Frankel R., Blakemore R.P., Wolfe R.S. Magnetite in freshwater magnetotactic bacteria. Science. 1979. 203: 1355–56.
  11. Walcott C., Gould J.L., Kirschvink J.L. Pigeons have magnets. Science. 1979. 184: 180–82.
  12. Zoeger J., Dunn J.R., Fuller M. Magnetic material in the head of the common Pacific dolphin. Science. 1981. 213(4510): 892–94.
  13. Chan C.S., De Stasio G., Welch S.A. Microbial polysaccharides template assembly of nanocrystal fibers. Science. 2004. 303: 1656–58.
  14. Mandernack K.W., Bazylinski D.A., Shanks W.C. Oxygen and iron isotope studies of magnetite produced by magnetotactic bacteria. Science. 1999. 285: 1892– 96.
  15. Dunin-Borkowski R.E., McCartney M.R., Frankel R.B., Bazylinski D.A., Posfai M., Buseck P.R. Magnetic Microstructure of Magnetotactic Bacteria by Electron Holography. Science. 1998. 282(5395): 1868–70.
  16. Richter M., Kube M., Bazylinski D.A. Comparative Genome Analysis of Four Magnetotactic Bacteria Reveals a Complex Set of Group-Specific Genes Implicated in Magnetosome Biomineralization and Function. J. Bacteriol. 2007. 189(13): 4899–910.
  17. Schübbe S., Würdemann C., Peplies J. Transcriptional Organization and Regulation of Magnetosome Operons in Magnetospirillum gryphiswaldense. Appl. Environ. Microbiol. 2006. 72(9): 5757–65.
  18. Vainshtein M., Suzina N., Kudryashova E., Ariskina E. New magnet-sensitive structures in bacterial and archaeal cells. Biology of the Cell. 2002. 94: 29–35.
  19. Vainshtein M.B., Suzina N.E., Sorokin V.V. A new type of magnet-sensitive inclusions in cells of photosynthetic purple bacteria. System. Appl. Microbiol. 1997. 20: 182–86.
  20. Bazylinski D.A., Frankel R.B. Magnetosome formation in prokaryotes. Nat. Rev. Microbiol. 2004. 2: 217–30.
  21. Kuterbach D.A., Walcott B. Iron-containing cells in the honey-bee (Apis mellifera). I. Adult morphology and physiology. J. Exp. Biol. 1986. 126: 375–87.
  22. Bharde A., Rautaray D., Sarkar I., Sastry M. Extracellular biosynthesis of magnetite using fungi. Small. 2006. 2: 135–41.
  23. Mann S., Sparks N.H.C., Walker M.M. Ultrastructure, morphology and organization of biogenic magnetite from sockeye salmon, Oncorhynchus nerka: Implications for magnetoreception. J. Exp. Biol. 1988. 140: 35–49.
  24. Grassi-Schultheiss P.P., Heller F., Dobson J. Analysis of magnetic material in the human heart, spleen and liver. BioMetals. 1997. 10: 351–55.
  25. Kirschvink J.L., Kobayashi-Kirschvink A., Woodford B.J. Magnetite biomineralization in the human brain. PNAS. 1992. 89: 7683–87.
  26. Brem F., Hirt A.M., Winklhofer M. Magnetic iron compounds in the human brain: a comparison of tumor and hippocampal tissue. J. R. Soc. Interface. 2006. 3: 833–41.
  27. Kirschvink J.L. Magnetite Biomineralization and Geomagnetic Sensitivity in Higher Animals: An Update and Recommendations for Future Study. Bioelectromagnetics. 1989. 10(3): 239–59.
  28. Ritz T., Dommer D.H., Phillips J.B. Shedding Light on Vertebrate Magnetoreception. Neuron. 2002. 34: 503–06.
  29. Cranfield C.G., Dawe A., Karloukovski V., Dunin-Borkowski R.E., de Pomerai D., Dobson J. Biogenic magnetite in the nematode Caenorhabditis elegans. Proc. R. Soc. Lond. B. 2004. 271(6): 436–39.
  30. Kirschvink J.L. Ferromagnetic crystals (magnetite?) in human tissue. J. Exp. Biol. 1981. 92(1): 333–35.
  31. Alekseeva T.A., Gorobets S.V., Gorobets O.Yu., Demyanenko I.V., Lazarenko O.M. Medychni perspektyvy. 2014. 19(1): 4–10 [in Ukrainian].
  32. Holland R.A., Kirschvink J.L., Doak T.G., Wikelski M. Bats Use Magnetite to Detect the Earth’s Magnetic Field. PloS ONE. 2008. doi: 10.1371/journal.pone.0001676.
  33. Eder S.H.K., Cadiou H., Muhamad A., McNaughton P.A., Kirschvink J.L, Winklhofer M. Magnetic characterization of isolated candidate vertebrate magnetoreceptor cells. PNAS. 2012. 109(30): 12022–27.
  34. de Oliveira J.F., Wajnberg E., Esquivel D.M., Weinkauf S., Winklhofer M., Hanzlik M. Ant antennae: are they sites for magnetoreception. J. R. Soc. Interface. 2010. 7: 143–52.
  35. Kirschvink J.L., Jones D.S., MacFadden B.J. Magnetite Biomineralization and Magnetoreception in Organisms: a new biomagnetism. (Plenum Publishing Corporation, 1985). P. 682.
  36. Schultheiss-Grassi P.P., Dobson J. Magnetic analysis of human brain tissue. BioMetals. 1999. 12: 67–72.
  37. Ullrich S., Kube M., Schübbe S. Hypervariable 130-Kilobase Genomic Region of Magnetospirillum gryphiswaldense Comprises a Magnetosome Island Which Undergoes Frequent Rearrangements during Stationary Growth. J. Bacteriol. 2005. 187(21): 7176–84.
  38. Abreu F., Cantão M.E., Nicolás M.F. Common ancestry of iron oxide- and iron-sulfide-based biomineralization in magnetotactic bacteria. ISME Journal. 2011. 5: 1634–40.
  39. Gorobets Yu.I., Gorobets S.V. Stationary flows of electrolytes in the vicinity of ferromagnetic particles in a constant magnetic field. Bulletin of Kherson State Technical University. 2000. 3(9): 276–81.
  40. Gorobets O.Yu., Gorobets S.V., Gorobets Yu.I. Biogenic magnetic nanoparticles: Biomineralization in prokaryotes and eukaryotes. In: Dekker Encyclopedia of Nanoscience and Nanotechnology (3rd Edition). (New York: CRC Press, 2014). P. 300–308.
  41. Gorobets O.Yu., Gorobets S.V., Gorobets Yu.I. Naukovi visti NTUU «KPI». 2013. 3: 28–33 [in Ukrainian].
  42. Gorobets S.V., Gorobets O.Yu. Functions of biogenic magnetic nanoparticles in organisms. Functional Materials. 2012. 19: 18–26.
  43. Ullrich S., Katzmann E., Borg S. Functional Analysis of the Magnetosome Island in Magnetospirillum gryphiswaldense: The mamAB Operon Is Sufficient for Magnetite Biomineralization. PLoS ONE. 2011. 6(10).
  44. Komeili A., Vali H., Beveridge T.J. Magnetosome vesicles are present before magnetite formation, and MamA is required for their activation. PNAS. 2004. 101(11): 3839–44.
  45. Murat D., Quinlan A., Vali H. Comprehensive genetic dissection of the magnetosome gene island reveals the step-wise assembly of a prokaryotic organelle. PNAS. 2010. 107: 5593–98.
  46. Nakazawa H., Arakaki A., Narita-Yamada S. Whole genome sequence of Desulfovibrio magneticus strain RS-1 revealed common gene clusters in magnetotactic bacteria. Genome Res. 2009. 19: 1801–08.
  47. Sakaguchi T., Arakaki A., Matsunaga T. Desulfovibrio magneticus sp. nov., a novel sulfate-reducing bacterium that produces intracellular single-domain-sized magnetite particles. Int. J. Syst. Evol. Microbiol. 2002. 52: 215–21.
  48. Rioux J.-B., Philippe N., Pereira S. Second Actin-Like MamK Protein in Magnetospirillum magneticum AMB-1 Encoded Outside the Genomic Magnetosome Island. PLoS ONE. 2010. 5(2): 151–60.
  49. Scheffel A., Gärdes A., Grünberg K. The Major Magnetosome Proteins MamGFDC Are Not Essential for Magnetite Biomineralization in Magnetospirillum gryphiswaldense but Regulate the Size of Magnetosome Crystals. J. Bacteriol. 2008. 190(1): 377–86.
  50. Taylor A.P., Barry J.C. Magnetosomal matrix: ultrafine structure may template biomineralization of magnetosomes. J. Microsc. 2004. 213(2): 180–97.
  51. Lins U., Farina M. Amorphous mineral phases in magnetotactic multicellular aggregates. Arch. Microbiol. 2001. 176: 323–28.
  52. Byrne M.E., Ball D.A., Guerquin-Kern J.-L. Desulfovibrio magneticus RS-1 contains an iron- and phosphorus-rich organelle distinct from its bullet-shaped magnetosomes. PNAS. 2010. 107(27): 12263–68.
  53. Gorobets O.Yu., Gorobets S.V., Sorokina L.V. Biomineralization and synthesis of biogenic magnetic nanoparticles and magnetosensitive inclusions in microorganisms and fungi. Functional Materials. 2014. 4: 15–21.
  54. Yan L., Zhang S., Chen P., Liu H., Yin H., Li H. Magnetotactic bacteria, magnetosomes and their application. Microbiol. Res. 2012. 167(9): 507–19.
  55. Biello D. Scientific American. 2009. http:
  56. Gorobets S.V. Gorobets O.Yu., Demyanenko I.V. Naukovi visti NTUU «KPI». 2013. 3: 34–41 [in Ukrainian].
  57. Kobayashi A., Yamamoto N., Kirschvink J. Study of inorganic crystalline solids in biosystems-magnetite in the human body. J. Soc. Powder and Powder Metall. 1996. 43(11): 1354–60.
  58. Dobson J. Nanoscale biogenic iron oxides and neurodegenerative disease. FEBS Lett. 2001. 496(1): 1–5.
  59. Quintana C., Bellefqih S., Laval J.Y., Guerquin-Kern J.L., Wu T.D., Avila J., Ferrer I., Arranz R., Patino C. Study of the localization of iron, ferritin, and hemosiderin in Alzheimer’s disease hippocampus by analytical microscopy at the subcellular level. Journal of Structural Biology. 2006. 153: 42–54.
  60. Winklhofer M., Petersen N. Paleomagnetism and Magnetic Bacteria. (Springer-Verlag, 2007). P. 255–273.
  61. Gorobets S.V., Gorobets O.Yu., Butenko K.O., Chyzh Yu.M. Medychni perspektyvy. 2014. 19(2): 4 [in Ukrainian].
  62. Gorobets S.V., Gorobets O.Yu., Chyzh Yu.M., Sivenok D.V. Magnetic dipole interaction of endogenous magnetic nanoparticles with magnetoliposomes for targeted drug delivery. Biophysics. 2013. 58(3): 379–84.
  63. Hautot D., Pankhurst Q.A., Morris C.M., Curtis A., Burn J., Dobson J. Preliminary observation of elevated levels of nanocrystalline iron oxides in the basal ganglia of neuroferritinopathy patients. Biochim. Biophys. Acta. 2007. 1772: 21–25.
  64. Dunin-Borkowski R.E., McCartney M.R., Posfai M., Frankel R.B., Bazylinski D.A., Buseck P.R. Off-axis electron holography of magnetotactic bacteria:magnetic microstructure of strains MV-1 and MS-1. Eur. J. Mineral. 2001. 13: 671–84.
  65. Gorobets O.Yu., Gorobets Yu.I., Bondar I.A. Quasi-stationary heterogeneous states of electrolyte at electrodeposition and etching process in a gradient magnetic field of a magnetized ferromagnetic ball. J. Magn. Magn. Mater. 2013. 330: 76–80.
  66. Gorobets Yu. I., Gorobets S.V. Formation of stationary flows of liquid in vicinity of ferromagnetic packing in constant magnetic field. Magnetohydrodynamics. 2000. 36: 75–78.
  67. Gorobets O.Yu., Gorobets Yu.I., Rospotniuk V.P. Movement of electrolyte at metal etching and deposition under a non-uniform steady magnetic field. Magnetohydrodynamics. 2014. 50(3): 317–32.
  68. Gorobets O.Yu., Gorobets Yu.I., Rospotniuk V.P., Legenkiy Yu.A. Electric cell voltage at the etching and deposition of metals under an inhomogeneous constant magnetic field. Condensed Matter Physics. 2014. 17: 1–18.
  69. Ilchenko M.Yu., Gorobets O.Yu., Bondar I.A. Influence of external magnetic field on the etching of a steel ball in an aqueous solution of nitric acid. J. Magn. Magn. Mater. 2010. 322: 2075–80.
  70. Gorobets S.V., Gorobets O.Yu., Brukva O.M. Periodic microstructuring of iron cylinder surface in nitric acid in a magnetic field. Appl. Surf. Sci. 2005. 252 2): 448–54.
  71. Gorobets S.V., Gorobets O.Yu., Mazur S.P., Slusar A.A. Influence of a steady magnetic field to a steel surface in the presence of an electrolyte. Phys. Status Solidi C. 2004. 1(12): 3686–88.
  72. Gorobets O.Yu., Gorobets V.Yu., Derecha D.O., Brukva O.M. Nickel electrodeposition under influence of constant homogeneous and high-gradient magnetic field. J. Phys. Chem. C. 2008. 112(9): 3373–75.
  73. Zhu K., Pan H., Li J. Isolation and characterization of a marine magnetotactic spirillum axenic culture QH-2 from an intertidal zone of the China Sea. Res. Microbiol. 2010. 161: 276–83.
  74. Frankel R.B., Bazylinski D.A. Structure and function of magnetosomes in  magnetotactic bacteria. Biomimetics. Design and Processing of Materials. 1995.
  75. Ruan J., Kato T., Santini C.-L. Architecture of a flagellar apparatus in the fast-swimming magnetotactic bacterium MO-1. PNAS. 2012. 109(50): 20643–48.
  76. Friedlaender F.J., Gerber R., Kurz W. Particle Motion Near and Capture on Single Spheres in HGMS. IEEE Trans. Magn. 1981. 17(6): 2801–03.
  77. Bazylinski D.A. Synthesis of the bacterial magnetosome: the making of a magnetic personality. Int. Microbiol. 1999. 2: 71–80.
  78. Grygorev I.S., Meylikhov E.Z. Fizicheskiye velichiny Spravochnik. (Moscow: Energoatomizdat, 1991).
  79. Bazilynski D.A., Frankel R.B., Heywood B.R. Controlled Biomineralization of Magnetite (Fe3O4) and Greigite (Fe3S4) in a Magnetotactic Bacterium. Appl. Environ. Microbiol. 1995. 61(9): 3232–39.
  80. Ganshin V.M., Labas Yu.A., Zinkevich E.P. Sensornyye sistemy. 2010. 24: 74–93 [in Russian].
  81. Kajimura M., Fukuda R., Bateman R.M. Interactions of Multiple Gas-Transducing Systems: Hallmarks and Uncertainties of CO, NO, and H2S Gas Biology. Antioxidants & Redox Signalling. 2010. 13(2): 157–92.
  82. Cui Y., Ge Z., Rizak J.D. Deficits in Water Maze Performance and Oxidative Stress in the Hippocampus and Striatum Induced by Extremely Low Frequency Magnetic Field Exposure. PLoS ONE. 2012. 147(5).
  83. Kornig A., Dong J., Bennet M., Widdrat M., Andert J., Muller F.D., Schuler D., Klumpp S., Faivre D. Probing the Mechanical Properties of Magnetosome Chains in Living Magnetotactic Bacteria. Nano Lett. 2014. 14: 4653–59.
  84. Wang X., Liang L. Effects of Static Magnetic Field on Magnetosome Formation and Expression of mamA, mms13, mms6 and magA in Magnetospirillum magneticum AMB-1. Bioelectromagnetics. 2009. 30: 313–21.
  85. Kobayashi A., Kirschvink J.L., Nash C.Z. Experimental observation of magnetosome chain collapse in magnetotactic bacteria: Sedimentological, paleomagnetic, and evolutionary implications. Earth and Planetary Science Letters. 2006. 245: 538–50.
  86. Patyar S., Joshi R., Byrav D.S., Prakash A., Medhi B, Das B.K. Bacteria in cancer therapy: a novel experimental strategy. J. Biomed. Sci. 2010. 17: 21–30.
  87. Patzak M., Dostalek P., Fogarty R.V., Safarik I., Tobin J.M. Development of magnetic biosorbents for metal uptake. Biotechnol. Tech. 1997. 11(7): 483–87.
  88. Bush A. Copper, zinc, and the metallobiology of Alzheimer disease. Alz. Dis Assoc. Disord. 2003. 17(3): 147–50.
  89. Matsunaga T., Suzuki T., Tanaka M., Arakaki A. Molecular analysis of magnetotactic bacteria and development of functional bacterial magnetic particles for nano-biotechnology. Trends Biotechnol. 2007. 25(4): 182–88.