Visn. Nac. Akad. Nauk Ukr. 2015. (7): 53-64
https://doi.org/10.15407/visn2015.07.053

O.Yu. Gorobets
Institute of Magnetism of NAS and MES of Ukraine, Kyiv

BIOMAGNETISM AND BIOGENIC MAGNETIC NANOPARTICLES

Abstract:
The common genetic mechanism of biomineralization of biogenic magnetic nanoparticles (nanocrystals of magnetite, maghemite and greigite) in unicellular and multicellular organisms is analyzed in this paper and their functions are discussed as natural strong magnets.

Keywordsgradient magnetic force, effective magnetic susceptibility, magnetic capture, genetic mechanism of biomineralization.

 

Language of article: ukrainian

References:

  1. Pavlovich N.V. Magnitnaya vospriimchivost’ organizmov. (Minsk: Nauka i tekhnika, 1985). P. 111.
  2. Gorobets Y.I., Gorobets O.Y. Statistical characteristics of trajectories of diamagnetic unicellular organisms in a magnetic field. Progress in Biophysics and Molecular Biology. 2015. 117(1): 125–28. http://doi.org/10.1016/j.pbiomolbio.2014.06.001
  3. Sakaguchi T., Burgess J.G., Matsunaga T. Magnetite formation by a sulphate-reducing bacterium. Nature. 1993. 365: 47–49. http://doi.org/10.1038/365047a0
  4. Diebel C.E., Proksch R., Green C.R. Magnetite defines a vertebrate magnetoreceptor. Nature. 2000. 406: 299–302. http://doi.org/10.1038/35018561
  5. Ritz T., Thalau P., Phillips J.B. Resonance effects indicate a radical-pair mechanism for avian magnetic compass. Nature. 2004. 429: 177–79. http://doi.org/10.1038/nature02534
  6. Mann S., Sparks N.H.C., Frankel R.B. Biomineralization of ferromagnetic greigite (Fe3S4) and pyrite (FeS2) in a magnetotactic bacterium. Nature. 1990. 343(18): 258–61. http://doi.org/10.1038/343258a0
  7. Gordon, L.M., Joester D. Nanoscale chemical tomography of buried organic-inorganic interfaces in the chiton tooth. Nature. 2011. 469: 194–97. http://doi.org/10.1038/nature09686
  8. Baker R.R., Mather J.G., Kennaugh J.H. Magnetic bones in human sinuses. Nature. 1983. 301: 78–80. http://doi.org/10.1038/301078a0
  9. Blakemore R.P. Magnetotactic bacteria. Science. 1975. 190: 377–79. http://doi.org/10.1126/science.170679
  10. Frankel R., Blakemore R.P., Wolfe R.S. Magnetite in freshwater magnetotactic bacteria. Science. 1979. 203: 1355–56. http://doi.org/10.1126/science.203.4387.1355
  11. Walcott C., Gould J.L., Kirschvink J.L. Pigeons have magnets. Science. 1979. 184: 180–82. http://doi.org/10.1126/science.184.4133.180
  12. Zoeger J., Dunn J.R., Fuller M. Magnetic material in the head of the common Pacific dolphin. Science. 1981. 213(4510): 892–94. http://doi.org/10.1126/science.7256282
  13. Chan C.S., De Stasio G., Welch S.A. Microbial polysaccharides template assembly of nanocrystal fibers. Science. 2004. 303: 1656–58. http://doi.org/10.1126/science.1092098
  14. Mandernack K.W., Bazylinski D.A., Shanks W.C. Oxygen and iron isotope studies of magnetite produced by magnetotactic bacteria. Science. 1999. 285: 1892– 96. http://doi.org/10.1126/science.285.5435.1892
  15. Dunin-Borkowski R.E., McCartney M.R., Frankel R.B., Bazylinski D.A., Posfai M., Buseck P.R. Magnetic Microstructure of Magnetotactic Bacteria by Electron Holography. Science. 1998. 282(5395): 1868–70. http://doi.org/10.1126/science.282.5395.1868
  16. Richter M., Kube M., Bazylinski D.A. Comparative Genome Analysis of Four Magnetotactic Bacteria Reveals a Complex Set of Group-Specific Genes Implicated in Magnetosome Biomineralization and Function. J. Bacteriol. 2007. 189(13): 4899–910. http://doi.org/10.1128/JB.00119-07
  17. Schübbe S., Würdemann C., Peplies J. Transcriptional Organization and Regulation of Magnetosome Operons in Magnetospirillum gryphiswaldense. Appl. Environ. Microbiol. 2006. 72(9): 5757–65. http://doi.org/10.1128/AEM.00201-06
  18. Vainshtein M., Suzina N., Kudryashova E., Ariskina E. New magnet-sensitive structures in bacterial and archaeal cells. Biology of the Cell. 2002. 94: 29–35. http://doi.org/10.1016/S0248-4900(02)01179-6
  19. Vainshtein M.B., Suzina N.E., Sorokin V.V. A new type of magnet-sensitive inclusions in cells of photosynthetic purple bacteria. System. Appl. Microbiol. 1997. 20: 182–86. http://doi.org/10.1016/S0723-2020(97)80064-1
  20. Bazylinski D.A., Frankel R.B. Magnetosome formation in prokaryotes. Nat. Rev. Microbiol. 2004. 2: 217–30. http://doi.org/10.1038/nrmicro842
  21. Kuterbach D.A., Walcott B. Iron-containing cells in the honey-bee (Apis mellifera). I. Adult morphology and physiology. J. Exp. Biol. 1986. 126: 375–87.
  22. Bharde A., Rautaray D., Sarkar I., Sastry M. Extracellular biosynthesis of magnetite using fungi. Small. 2006. 2: 135–41. http://doi.org/10.1002/smll.200500180
  23. Mann S., Sparks N.H.C., Walker M.M. Ultrastructure, morphology and organization of biogenic magnetite from sockeye salmon, Oncorhynchus nerka: Implications for magnetoreception. J. Exp. Biol. 1988. 140: 35–49.
  24. Grassi-Schultheiss P.P., Heller F., Dobson J. Analysis of magnetic material in the human heart, spleen and liver. BioMetals. 1997. 10: 351–55. http://doi.org/10.1023/A:1018340920329
  25. Kirschvink J.L., Kobayashi-Kirschvink A., Woodford B.J. Magnetite biomineralization in the human brain. PNAS. 1992. 89: 7683–87. http://doi.org/10.1073/pnas.89.16.7683
  26. Brem F., Hirt A.M., Winklhofer M. Magnetic iron compounds in the human brain: a comparison of tumor and hippocampal tissue. J. R. Soc. Interface. 2006. 3: 833–41. http://doi.org/10.1098/rsif.2006.0133
  27. Kirschvink J.L. Magnetite Biomineralization and Geomagnetic Sensitivity in Higher Animals: An Update and Recommendations for Future Study. Bioelectromagnetics. 1989. 10(3): 239–59. http://doi.org/10.1002/bem.2250100304
  28. Ritz T., Dommer D.H., Phillips J.B. Shedding Light on Vertebrate Magnetoreception. Neuron. 2002. 34: 503–06. http://doi.org/10.1016/S0896-6273(02)00707-9
  29. Cranfield C.G., Dawe A., Karloukovski V., Dunin-Borkowski R.E., de Pomerai D., Dobson J. Biogenic magnetite in the nematode Caenorhabditis elegans. Proc. R. Soc. Lond. B. 2004. 271(6): 436–39. http://doi.org/10.1098/rsbl.2004.0209
  30. Kirschvink J.L. Ferromagnetic crystals (magnetite?) in human tissue. J. Exp. Biol. 1981. 92(1): 333–35.
  31. Alekseeva T.A., Gorobets S.V., Gorobets O.Yu., Demyanenko I.V., Lazarenko O.M. Medychni perspektyvy. 2014. 19(1): 4–10 [in Ukrainian].
  32. Holland R.A., Kirschvink J.L., Doak T.G., Wikelski M. Bats Use Magnetite to Detect the Earth’s Magnetic Field. PloS ONE. 2008. doi: 10.1371/journal.pone.0001676. http://doi.org/10.1371/journal.pone.0001676
  33. Eder S.H.K., Cadiou H., Muhamad A., McNaughton P.A., Kirschvink J.L, Winklhofer M. Magnetic characterization of isolated candidate vertebrate magnetoreceptor cells. PNAS. 2012. 109(30): 12022–27. http://doi.org/10.1073/pnas.1205653109
  34. de Oliveira J.F., Wajnberg E., Esquivel D.M., Weinkauf S., Winklhofer M., Hanzlik M. Ant antennae: are they sites for magnetoreception. J. R. Soc. Interface. 2010. 7: 143–52. http://doi.org/10.1098/rsif.2009.0102
  35. Kirschvink J.L., Jones D.S., MacFadden B.J. Magnetite Biomineralization and Magnetoreception in Organisms: a new biomagnetism. (Plenum Publishing Corporation, 1985). P. 682. http://doi.org/10.1007/978-1-4613-0313-8
  36. Schultheiss-Grassi P.P., Dobson J. Magnetic analysis of human brain tissue. BioMetals. 1999. 12: 67–72. http://doi.org/10.1023/A:1009271111083
  37. Ullrich S., Kube M., Schübbe S. Hypervariable 130-Kilobase Genomic Region of Magnetospirillum gryphiswaldense Comprises a Magnetosome Island Which Undergoes Frequent Rearrangements during Stationary Growth. J. Bacteriol. 2005. 187(21): 7176–84. http://doi.org/10.1128/JB.187.21.7176-7184.2005
  38. Abreu F., Cantão M.E., Nicolás M.F. Common ancestry of iron oxide- and iron-sulfide-based biomineralization in magnetotactic bacteria. ISME Journal. 2011. 5: 1634–40. http://doi.org/10.1038/ismej.2011.35
  39. Gorobets Yu.I., Gorobets S.V. Stationary flows of electrolytes in the vicinity of ferromagnetic particles in a constant magnetic field. Bulletin of Kherson State Technical University. 2000. 3(9): 276–81.
  40. Gorobets O.Yu., Gorobets S.V., Gorobets Yu.I. Biogenic magnetic nanoparticles: Biomineralization in prokaryotes and eukaryotes. In: Dekker Encyclopedia of Nanoscience and Nanotechnology (3rd Edition). (New York: CRC Press, 2014). P. 300–308.
  41. Gorobets O.Yu., Gorobets S.V., Gorobets Yu.I. Naukovi visti NTUU «KPI». 2013. 3: 28–33 [in Ukrainian].
  42. Gorobets S.V., Gorobets O.Yu. Functions of biogenic magnetic nanoparticles in organisms. Functional Materials. 2012. 19: 18–26.
  43. Ullrich S., Katzmann E., Borg S. Functional Analysis of the Magnetosome Island in Magnetospirillum gryphiswaldense: The mamAB Operon Is Sufficient for Magnetite Biomineralization. PLoS ONE. 2011. 6(10).
  44. Komeili A., Vali H., Beveridge T.J. Magnetosome vesicles are present before magnetite formation, and MamA is required for their activation. PNAS. 2004. 101(11): 3839–44. http://doi.org/10.1073/pnas.0400391101
  45. Murat D., Quinlan A., Vali H. Comprehensive genetic dissection of the magnetosome gene island reveals the step-wise assembly of a prokaryotic organelle. PNAS. 2010. 107: 5593–98. http://doi.org/10.1073/pnas.0914439107
  46. Nakazawa H., Arakaki A., Narita-Yamada S. Whole genome sequence of Desulfovibrio magneticus strain RS-1 revealed common gene clusters in magnetotactic bacteria. Genome Res. 2009. 19: 1801–08. http://doi.org/10.1101/gr.088906.108
  47. Sakaguchi T., Arakaki A., Matsunaga T. Desulfovibrio magneticus sp. nov., a novel sulfate-reducing bacterium that produces intracellular single-domain-sized magnetite particles. Int. J. Syst. Evol. Microbiol. 2002. 52: 215–21. http://doi.org/10.1099/00207713-52-1-215
  48. Rioux J.-B., Philippe N., Pereira S. Second Actin-Like MamK Protein in Magnetospirillum magneticum AMB-1 Encoded Outside the Genomic Magnetosome Island. PLoS ONE. 2010. 5(2): 151–60. http://doi.org/10.1371/journal.pone.0009151
  49. Scheffel A., Gärdes A., Grünberg K. The Major Magnetosome Proteins MamGFDC Are Not Essential for Magnetite Biomineralization in Magnetospirillum gryphiswaldense but Regulate the Size of Magnetosome Crystals. J. Bacteriol. 2008. 190(1): 377–86. http://doi.org/10.1128/JB.01371-07
  50. Taylor A.P., Barry J.C. Magnetosomal matrix: ultrafine structure may template biomineralization of magnetosomes. J. Microsc. 2004. 213(2): 180–97. http://doi.org/10.1111/j.1365-2818.2004.01287.x
  51. Lins U., Farina M. Amorphous mineral phases in magnetotactic multicellular aggregates. Arch. Microbiol. 2001. 176: 323–28. http://doi.org/10.1007/s002030100328
  52. Byrne M.E., Ball D.A., Guerquin-Kern J.-L. Desulfovibrio magneticus RS-1 contains an iron- and phosphorus-rich organelle distinct from its bullet-shaped magnetosomes. PNAS. 2010. 107(27): 12263–68. http://doi.org/10.1073/pnas.1001290107
  53. Gorobets O.Yu., Gorobets S.V., Sorokina L.V. Biomineralization and synthesis of biogenic magnetic nanoparticles and magnetosensitive inclusions in microorganisms and fungi. Functional Materials. 2014. 4: 15–21.
  54. Yan L., Zhang S., Chen P., Liu H., Yin H., Li H. Magnetotactic bacteria, magnetosomes and their application. Microbiol. Res. 2012. 167(9): 507–19. http://doi.org/10.1016/j.micres.2012.04.002
  55. Biello D. Scientific American. 2009. http: www.scientificamerican.com/article/origin-of-oxygen-in-atmosphere/.
  56. Gorobets S.V. Gorobets O.Yu., Demyanenko I.V. Naukovi visti NTUU «KPI». 2013. 3: 34–41 [in Ukrainian].
  57. Kobayashi A., Yamamoto N., Kirschvink J. Study of inorganic crystalline solids in biosystems-magnetite in the human body. J. Soc. Powder and Powder Metall. 1996. 43(11): 1354–60. http://doi.org/10.2497/jjspm.43.1354
  58. Dobson J. Nanoscale biogenic iron oxides and neurodegenerative disease. FEBS Lett. 2001. 496(1): 1–5. http://doi.org/10.1016/S0014-5793(01)02386-9
  59. Quintana C., Bellefqih S., Laval J.Y., Guerquin-Kern J.L., Wu T.D., Avila J., Ferrer I., Arranz R., Patino C. Study of the localization of iron, ferritin, and hemosiderin in Alzheimer’s disease hippocampus by analytical microscopy at the subcellular level. Journal of Structural Biology. 2006. 153: 42–54. http://doi.org/10.1016/j.jsb.2005.11.001
  60. Winklhofer M., Petersen N. Paleomagnetism and Magnetic Bacteria. (Springer-Verlag, 2007). P. 255–273. http://doi.org/10.1007/7171_046
  61. Gorobets S.V., Gorobets O.Yu., Butenko K.O., Chyzh Yu.M. Medychni perspektyvy. 2014. 19(2): 4 [in Ukrainian].
  62. Gorobets S.V., Gorobets O.Yu., Chyzh Yu.M., Sivenok D.V. Magnetic dipole interaction of endogenous magnetic nanoparticles with magnetoliposomes for targeted drug delivery. Biophysics. 2013. 58(3): 379–84. http://doi.org/10.1134/S000635091303007X
  63. Hautot D., Pankhurst Q.A., Morris C.M., Curtis A., Burn J., Dobson J. Preliminary observation of elevated levels of nanocrystalline iron oxides in the basal ganglia of neuroferritinopathy patients. Biochim. Biophys. Acta. 2007. 1772: 21–25.
  64. Dunin-Borkowski R.E., McCartney M.R., Posfai M., Frankel R.B., Bazylinski D.A., Buseck P.R. Off-axis electron holography of magnetotactic bacteria:magnetic microstructure of strains MV-1 and MS-1. Eur. J. Mineral. 2001. 13: 671–84. http://doi.org/10.1127/0935-1221/2001/0013-0671
  65. Gorobets O.Yu., Gorobets Yu.I., Bondar I.A. Quasi-stationary heterogeneous states of electrolyte at electrodeposition and etching process in a gradient magnetic field of a magnetized ferromagnetic ball. J. Magn. Magn. Mater. 2013. 330: 76–80. http://doi.org/10.1016/j.jmmm.2012.10.015
  66. Gorobets Yu. I., Gorobets S.V. Formation of stationary flows of liquid in vicinity of ferromagnetic packing in constant magnetic field. Magnetohydrodynamics. 2000. 36: 75–78.
  67. Gorobets O.Yu., Gorobets Yu.I., Rospotniuk V.P. Movement of electrolyte at metal etching and deposition under a non-uniform steady magnetic field. Magnetohydrodynamics. 2014. 50(3): 317–32.
  68. Gorobets O.Yu., Gorobets Yu.I., Rospotniuk V.P., Legenkiy Yu.A. Electric cell voltage at the etching and deposition of metals under an inhomogeneous constant magnetic field. Condensed Matter Physics. 2014. 17: 1–18. http://doi.org/10.5488/CMP.17.43401
  69. Ilchenko M.Yu., Gorobets O.Yu., Bondar I.A. Influence of external magnetic field on the etching of a steel ball in an aqueous solution of nitric acid. J. Magn. Magn. Mater. 2010. 322: 2075–80. http://doi.org/10.1016/j.jmmm.2010.01.037
  70. Gorobets S.V., Gorobets O.Yu., Brukva O.M. Periodic microstructuring of iron cylinder surface in nitric acid in a magnetic field. Appl. Surf. Sci. 2005. 252 2): 448–54.
  71. Gorobets S.V., Gorobets O.Yu., Mazur S.P., Slusar A.A. Influence of a steady magnetic field to a steel surface in the presence of an electrolyte. Phys. Status Solidi C. 2004. 1(12): 3686–88. http://doi.org/10.1002/pssc.200405561
  72. Gorobets O.Yu., Gorobets V.Yu., Derecha D.O., Brukva O.M. Nickel electrodeposition under influence of constant homogeneous and high-gradient magnetic field. J. Phys. Chem. C. 2008. 112(9): 3373–75. http://doi.org/10.1021/jp0762572
  73. Zhu K., Pan H., Li J. Isolation and characterization of a marine magnetotactic spirillum axenic culture QH-2 from an intertidal zone of the China Sea. Res. Microbiol. 2010. 161: 276–83. http://doi.org/10.1016/j.resmic.2010.02.003
  74. Frankel R.B., Bazylinski D.A. Structure and function of magnetosomes in  magnetotactic bacteria. Biomimetics. Design and Processing of Materials. 1995. http://works.bepress.com/rfrankel/159.
  75. Ruan J., Kato T., Santini C.-L. Architecture of a flagellar apparatus in the fast-swimming magnetotactic bacterium MO-1. PNAS. 2012. 109(50): 20643–48. http://doi.org/10.1073/pnas.1215274109
  76. Friedlaender F.J., Gerber R., Kurz W. Particle Motion Near and Capture on Single Spheres in HGMS. IEEE Trans. Magn. 1981. 17(6): 2801–03. http://doi.org/10.1109/TMAG.1981.1061683
  77. Bazylinski D.A. Synthesis of the bacterial magnetosome: the making of a magnetic personality. Int. Microbiol. 1999. 2: 71–80.
  78. Grygorev I.S., Meylikhov E.Z. Fizicheskiye velichiny Spravochnik. (Moscow: Energoatomizdat, 1991).
  79. Bazilynski D.A., Frankel R.B., Heywood B.R. Controlled Biomineralization of Magnetite (Fe3O4) and Greigite (Fe3S4) in a Magnetotactic Bacterium. Appl. Environ. Microbiol. 1995. 61(9): 3232–39.
  80. Ganshin V.M., Labas Yu.A., Zinkevich E.P. Sensornyye sistemy. 2010. 24: 74–93 [in Russian].
  81. Kajimura M., Fukuda R., Bateman R.M. Interactions of Multiple Gas-Transducing Systems: Hallmarks and Uncertainties of CO, NO, and H2S Gas Biology. Antioxidants & Redox Signalling. 2010. 13(2): 157–92. http://doi.org/10.1089/ars.2009.2657
  82. Cui Y., Ge Z., Rizak J.D. Deficits in Water Maze Performance and Oxidative Stress in the Hippocampus and Striatum Induced by Extremely Low Frequency Magnetic Field Exposure. PLoS ONE. 2012. 147(5). http://doi.org/10.1371/journal.pone.0032196
  83. Kornig A., Dong J., Bennet M., Widdrat M., Andert J., Muller F.D., Schuler D., Klumpp S., Faivre D. Probing the Mechanical Properties of Magnetosome Chains in Living Magnetotactic Bacteria. Nano Lett. 2014. 14: 4653–59. http://doi.org/10.1021/nl5017267
  84. Wang X., Liang L. Effects of Static Magnetic Field on Magnetosome Formation and Expression of mamA, mms13, mms6 and magA in Magnetospirillum magneticum AMB-1. Bioelectromagnetics. 2009. 30: 313–21. http://doi.org/10.1002/bem.20469
  85. Kobayashi A., Kirschvink J.L., Nash C.Z. Experimental observation of magnetosome chain collapse in magnetotactic bacteria: Sedimentological, paleomagnetic, and evolutionary implications. Earth and Planetary Science Letters. 2006. 245: 538–50. http://doi.org/10.1016/j.epsl.2006.03.041
  86. Patyar S., Joshi R., Byrav D.S., Prakash A., Medhi B, Das B.K. Bacteria in cancer therapy: a novel experimental strategy. J. Biomed. Sci. 2010. 17: 21–30. http://doi.org/10.1186/1423-0127-17-21
  87. Patzak M., Dostalek P., Fogarty R.V., Safarik I., Tobin J.M. Development of magnetic biosorbents for metal uptake. Biotechnol. Tech. 1997. 11(7): 483–87. http://doi.org/10.1023/A:1018453814472
  88. Bush A. Copper, zinc, and the metallobiology of Alzheimer disease. Alz. Dis Assoc. Disord. 2003. 17(3): 147–50. http://doi.org/10.1097/00002093-200307000-00005
  89. Matsunaga T., Suzuki T., Tanaka M., Arakaki A. Molecular analysis of magnetotactic bacteria and development of functional bacterial magnetic particles for nano-biotechnology. Trends Biotechnol. 2007. 25(4): 182–88. http://doi.org/10.1016/j.tibtech.2007.02.002