Visn. Nac. Akad. Nauk Ukr. 2016. (12):63-73

I.V. Krive, S.I. Shevchenko
Verkin Institute for Low Temperature Physics and Engineering of the National Academy of Sciences of Ukraine, Kharkiv

Nobel Prize in Physics for 2016

In 2016 the Nobel Committee in Physics awarded Prof. D.J. Thouless (1/2 prize), Prof. J.M. Kosterlitz (1/4 prize) and Prof. F.D.M. Haldane (1/4 prize) for “theoretical discovery of topological phase transitions and topological phases of matter”. We discuss new ideas and the results of papers where (i) topological phase transitions (Berezinskii–Kosterlitz–Thouless phase transitions) in two-dimensional condensed matter were theoretically predicted, (ii) a deep connection between quantization of the Hall conductivity in 2D systems with violated T-invariance and topological quantities (Chern invariant) was revealed (Thouless–Kohmoto–Nightingale–den Nijs), (iii) new quantum phase (Haldane phase) of spin chains with integer spin was predicted. Main attention was given to qualitative explanation of the predicted new phenomena. We follow the interconnections between the cited works of Nobel laureates and low-dimensional models of relativistic quantum field theory where the crucial role of topological invariants in the special phases of quantum matter was first noted.

Keywords: topological phase transitions, topological phases, topological invariants, Hall conductivity, spin chains.

Language of article: ukrainian



1.     Peierls R. Bemerkungen über Umwandlungstemperaturen (Remarks on transition temperatures). Helv. Phys. Acta. 1934. 7(Suppl. 2): 81.

2.     Landau L.D. By the theory of phase transitions. JETP. 1937. 7:627.

3.     Mermin N.D., Wagner H. Absence of ferromagnetism or antiferromagnetism in one- or two-dimensional isotropic Heisenberg models. Phys. Rev. Lett. 1966. 17(26): 1133.

4.     Hohenberg P.C. Existence of long-range order in one and two dimensions. Phys. Rev. 1967. 158(2): 383.

5.     Bogolyubov N.N. Quasi-averages in problems of statistical mechanics. (Dubna: JINR, 1961).

6.     Stanley H.E., Kaplan T.A. Possibility of a phase transition for the two-dimensional Heisenberg model. Phys. Rev. Lett. 1966. 17(17): 913.

7.     Stanley H.E. Dependence of critical properties on dimensionality of spins. Phys. Rev. Lett. 1968. 20(12): 589.

8.     Moore M.A. Additional evidence for a phase transition in the plane-rotator and classical Heisenberg models for two-dimensional lattices. Phys. Rev. Lett. 1969. 23(15): 861.

9.     Berezinskii V.L. Destruction of long-range order in one-dimensional and two-dimensional systems having a continuous symmetry group. I. Classical systems. JETP. 1971. 32(3): 493.

10. Berezinskii V.L. Destruction of long-range order in one-dimensional and two-dimensional systems possessing a continuous symmetry group. II. Quantum systems. JETP. 1972. 34(3): 610.

11. Kosterlitz J.M., Thouless D.J. Long range order and metastability in two dimensional solids and superfluids. (Application of dislocation theory). J. Phys. C. 1972. 5(11): 124.

12. Kosterlitz J.M., Thouless D.J. Ordering, metastability and phase transitions in two-dimensional systems. J. Phys. C. 1973. 6(7): 1181.

13. Halperin B.I., Nelson D.R. Theory of two-dimensional melting. Phys. Rev. Lett. 1978. 41(2): 519.

14. Young A.P. Melting and the vector Coulomb gas in two dimensions. Phys. Rev. B. 1979. 19(4):1855.

15. Beasley M.R., Mooij J.E., Orlando T.P. Possibility of vortex-antivortex pair dissociation in two-dimensional superconductors. Phys Rev. Lett. 1979. 42(17): 1165.

16. Doniach S., Huberman B.A. Topological excitations in two-dimensional superconductors. Phys. Rev. Lett. 1979. 42(17): 1169.

17. von Klitzing K., Dorda G., Pepper M. New method for high-accuracy determination of the fine-structure constant based on quantized Hall resistance. Phys. Rev. Lett. 1980. 45(6): 494.

18. von Klitzing K. The quantized Hall effect. In: Nobel Lectures in Physics 19811990. (World Scientific Publishing Company, 1993).

19. Tsui D.C., Stormer H.L., Gossard A.C. Two-dimensional magnetotransport in the extreme quantum limit. Phys. Rev. Lett. 1982. 48(22): 1559.

20. Laughlin R.B. Quantized Hall conductivity in two dimensions. Phys. Rev. B. 1981. 23(10): 5632.

21. Thouless D.J., Kohmoto M., Nightingale M.P., den Nijs M. Quantized Hall conductance in a two-dimensional periodic potential. Phys. Rev. Lett. 1982. 49(6): 405.

22. Haldane F.D.M. Model for a quantum Hall effect without Landau levels: condensed-matter realization of the "Parity Anomaly". Phys. Rev. Lett. 1988. 61(18): 2015.

23. Chang C.-Z., Zhang J., Feng X., Shen J., Zhang Z., Guo M., Li K., Ou Y., Wei P., Wang L.-L., Ji Z.-Q., Feng Y., Ji S., Chen X., Jia J., Dai X., Fang Z., Zhang S.-C., He K., Wang Y., Lu L., Ma X.-C., Xue Q.-K. Experimental observation of the quantum anomalous Hall effect in a magnetic topological insulator. Science. 2013. 340(6129): 167.

24. Chang C.-Z., Zhao W., Kim D.Y., Zhang H., Assaf B.A., Heiman D., Zhang S.-C., Liu C., Chan M.H.W., Moodera J.S. High-precision realization of robust quantum anomalous Hall state in a hard ferromagnetic topological insulator. Nat. Mater. 2015. 14: 473.

25. Jotzu G., Messer M., Desbuquois R., Lebrat M., Uehlinger T., Greif D., Esslinger T. Experimental realization of the topological Haldane model with ultracold fermions. Nature. 2014. 515: 237.

26. Haldane F.D.M. Continuum dynamics of the 1-D Heisenberg antiferromagnet: identification with the O(3) nonlinear sigma model. Phys. Lett. A. 1983. 93(9): 464.

27. Haldane F.D.M. Nonlinear field theory of large-spin Heisenberg antiferromagnets: semiclassically quantized solitons of the one-dimensional easy-axis Neel state. Phys. Rev. Lett. 1983. 50(15): 1153.

28. Bethe H. Zur Theorie der Metalle. I. Eigenwerte und Eigenfunktionen der linearen Atomkette. Z. Physik. 1931. 71: 205.

29. Belavin A.A., Polyakov A.M. Metastable states of two-dimensional isotropic ferromagnet. JETP Letters. 1975. 22(10): 245.

30. Pohlmeyer K. Integrable Hamiltonian systems and interactions through quadratic constraints. Commun. Math. Phys. 1976. 46(3): 207.

31. Polyakov A.M. Hidden symmetry of the two-dimensional chiral fields. Phys. Lett. B. 1977. 72(2): 224.

32. Coleman S., Weinberg E. Radiative corrections as the origin of spontaneous symmetry breaking. Phys. Rev. D. 1973. 7: 1888.

33. Krive I.V., Rozhavskii A.S. Fractional charge in quantum field theory and solid-state physics. Sov. Phys. Usp. 1987. 30: 370.

34. Polyakov A.M. Compact gauge fields and the infrared catastrophe. Phys. Lett. B. 1975. 59(1): 82.

35. Belavin A.A., Polyakov A.M., Tyupkin Yu.S., Schwartz A.S. Pseudoparticle solutions of the Yang-Mills equations. Phys. Lett. B. 1975. 59(1): 85.

36. Shankar R., Read N. The nonlinear sigma model is massless. Nucl. Phys. B. 1990. 336(3): 457.

37. Buyers W.J.L., Morra R.M., Armstrong R.L., Hogan M.J., Gerlach P., Hirakawa K. Experimental evidence for the Haldane gap in a spin-1 nearly isotropic antiferromagnetic chain. Phys. Rev. Lett. 1986. 56(4): 371.