Visn. Nac. Akad. Nauk Ukr. 2017. (12): 50-62 
https://doi.org/10.15407/visn2017.12.050 

S.I. Romanyuk, S.V. Komisarenko
Palladin Institute of Biochemistry of the National Academy of Sciences of Ukraine, Kyiv

WHY CIRCADIAN RHYTHMS ARE NEEDED,OR HOW TO CHANGE THE RATE OF THE "BIOLOGICAL CLOCK"
Nobel Prize in Physiology or Medicine for 2017

On October 2, the Nobel Committee at the Karolinska Institute announced the names of the winners of the Nobel Prize in Physiology or Medicine for 2017. These were three scientists from the United States: Jeffrey C. Hall, Michael Rosbash and Michael W. Young. The award was given to them “for the discovery of the molecular mechanisms controlling the circadian rhythm.”

 Language of article: ukrainian

 

REFERENCES

1.     The 2017 Clarivate Citation Laureates. https://clarivate.com/2017-citation-laureates/

2.     The Nobel Prize in Physiology or Medicine 2017. Press Release. https://www.nobelprize.org/nobel_prizes/medicine/laureates/2017/press.html

3.     Circadian rhythm. From Wikipedia. https://en.wikipedia.org/wiki/Circadian_rhythm

4.     Circadian rhythm  https://wikivisually.com/lang-ru/wiki/Циркадный_ритм

5.     Sulzman F.M., Ellman D., Fuller C.A., Moore-Ede M.C., Wassmer G. Neurospora circadian rhythms in space: a reexamination of the endogenous-exogenous question. Science. 1984. 225: 232. http://www.jstor.org/stable/1693133

6.     Halberg F. Chronobiology. Annu. Rev. Physiol. 1969. 31: 675. https://doi.org/10.1146/annurev.ph.31.030169.003331

7.     Konopka R.J., Benzer S. Clock mutants of Drosophila melanogaster. Proc. Nat. Acad. Sci. USA. 1971. 68(9): 2112. http://dx.doi.org/10.1073/pnas.68.9.2112

8.     Reddy P., Zehring W.A., Wheeler D.A., Pirrotta V., Hadfield C., Hall J.C., Rosbash M. Molecular analysis of the period locus in Drosophila melanogaster and identification of a transcript involved in biological rhythms. Cell. 1984. 38(3): 701. http://dx.doi.org/10.1016/0092-8674(84)90265-4

9.     Bargiello T.A., Jackson F.R., Young M.W. Restoration of circadian behavioral rhythms by gene transfer in Drosophila. Nature. 1984. 312(5996): 752.https://doi.org/10.1038/312752a0

10. Zehring W.A., Wheeler D.A., Reddy P., Konopka R.J., Kyriacou C.P., Rosbash M., Hall J.C. P-element transformation with period locus DNA restores rhythmicity to mutant, arrhythmic Drosophila melanogaster. Cell. 1984. 39(2): 369. http://dx.doi.org/10.1016/0092-8674(84)90015-1

11. Hardin P.E., Hall J.C., Rosbash M. Feedback of the Drosophila period gene product on circadian cycling of its messenger RNA levels. Nature. 1990. 343(6258): 536. http://dx.doi.org/10.1038/343536a0

12. Liu X., Zwiebel L.J., Hinton D., Benzer S., Hall J.C., Rosbash M.J. The period gene encodes a predominantly nuclear protein in adult Drosophila. Neuroscience. 1992. 12(7): 2735.

13. Sehgal A., Price J.L., Man B., Young M.W. Loss of circadian behavioral rhythms and per RNA oscillations in the Drosophila mutant timeless. Science. 1994. 263(5153): 1603. http://dx.doi.org/10.1126/science.8128246

14. Gekakis N., Saez L., Delahaye-Brown A.M., Myers M.P., Sehgal A., Young M.W., Weitz C.J. Isolation of timeless by PER protein interaction: defective interaction between timeless protein and long-period mutant PERL. Science. 1995. 270(5237): 811. http://dx.doi.org/10.1126/science.270.5237.811

15. Myers M.P., Wager-Smith K., Rothenfluh-Hilfiker A., Young M.W. Light-induced degradation of TIMELESS and entrainment of the Drosophila circadian clock. Science. 1996. 271(5256): 1736. http://dx.doi.org/10.1126/science.271.5256.1736

16. Allada R., White N.E., So W.V., Hall J.C., Rosbash M. A mutant Drosophila homolog of mammalian Clock disrupts circadian rhythms and transcription of period and timeless. Cell. 1998. 93(5): 791. http://dx.doi.org/10.1016/S0092-8674(00)81440-3n

17. Rutila J.E., Suri V., Le M., So W.V., Rosbash M., Hall J.C. CYCLE is a second bHLH-PAS clock protein essential for circadian rhythmicity and transcription of Drosophila period and timeless. Cell. 1998. 93(5): 805. http://dx.doi.org/10.1016/S0092-8674(00)81441-5

18. King D.P., Zhao Y., Sangoram A.M., Wilsbacher L.D., Tanaka M., Antoch M.P., Steeves T.D., Vitaterna M.H., Kornhauser J.M., Lowrey P.L., Turek F.W., Takahashi J.S. Positional cloning of the mouse circadian clock gene. Cell. 1997. 89(4): 641. http://dx.doi.org/10.1016/S0092-8674(00)80245-7

19. Hao H., Allen D.L., Hardin P.E. A circadian enhancer mediates PER-dependent mRNA cycling in Drosophila melanogaster. Mol. Cell Biol. 1997. 17(7): 3687. http://dx.doi.org/10.1128/MCB.17.7.3687

20. Ephrussi A., Church G.M., Tonegawa S., Gilbert W. B lineage--specific interactions of an immunoglobulin enhancer with cellular factors in vivo. Science. 1985. 227(4683): 134. http://dx.doi.org/10.1126/science.3917574

21. Emery P., So W.V., Kaneko M., Hall J.C., Rosbash M. CRY, a Drosophila clock and light-regulated cryptochrome, is a major contributor to circadian rhythm resetting and photosensitivity. Cell. 1998. 95(5): 669. http://dx.doi.org/10.1016/S0092-8674(00)81637-2

22. Ceriani M.F., Darlington T.K., Staknis D., Mаs P., Petti A.A., Weitz C.J., Kay S.A. Light-dependent sequestration of TIMELESS by CRYPTOCHROME. Science. 1999. 285(5427): 553. http://dx.doi.org/10.1126/science.285.5427.553

23. Qin S., Yin H., Yang C., Dou Y., Liu Z., Zhang P., Yu H., Huang Y., Feng J., Hao J., Hao J., Deng L., Yan X., Dong X., Zhao Z., Jiang T., Wang H.W., Luo S.J., Xie C. A magnetic protein biocompass. Nat. Mater. 2016. 15(2): 217. http://dx.doi.org/10.1038/nmat4484

24. Price J.L., Blau J., Rothenfluh A., Abodeely M., Kloss B., Young M.W. Double-time is a novel Drosophila clock gene that regulates PERIOD protein accumulation. Cell. 1998. 94(1): 83. http://dx.doi.org/10.1016/S0092-8674(00)81224-6

25. Martinek S., Inonog S., Manoukian A.S., Young M.W. A role for the segment polarity gene shaggy/GSK-3 in the Drosophila circadian clock. Cell. 2001. 105(6): 769. http://dx.doi.org/10.1016/S0092-8674(01)00383-X

26. Lin J.M., Kilman V.L., Keegan K., Paddock B., Emery-Le M., Rosbash M., Allada R. A role for casein kinase 2alpha in the Drosophila circadian clock. Nature. 2002. 420(6917): 816. http://dx.doi.org/10.1038/nature01235

27. Blau J., Young M.W. Cycling vrille expression is required for a functional Drosophila clock. Cell. 1999. 99(6): 661. http://dx.doi.org/10.1016/S0092-8674(00)81554-8

28. Cyran S.A., Buchsbaum A.M., Reddy K.L., Lin M.C., Glossop N.R., Hardin P.E., Young M.W., Storti R.V., Blau J. vrille, Pdp1, and dClock form a second feedback loop in the Drosophila circadian clock. Cell. 2003. 112(3): 329. http://dx.doi.org/10.1016/S0092-8674(03)00074-6

29. Koh K., Zheng X., Sehgal A. JETLAG resets the Drosophila circadian clock by promoting light-induced degradation of TIMELESS. Science. 2006. 312(5781): 1809. http://dx.doi.org/10.1126/science.1124951

30. Pittendrigh C.S., Daan S. A functional analysis of circadian pacemakers in nocturnal rodents. V. Pacemaker structure: a clock for all seasons. J. Comp. Physiol. 1976. 106(2): 333. http://dx.doi.org/10.1007/BF01417860

31. Grima B., Chelot E., Xia R., Rouyer F. Morning and evening peaks of activity rely on different clock neurons of the Drosophila brain. Nature. 2004. 431(7010): 869. http://dx.doi.org/10.1038/nature02935

32. Park J.H., Hall J.C. Isolation and chronobiological analysis of a neuropeptide pigment-dispersing factor gene in Drosophila melanogaster. J. Biol. Rhythms. 1998. 13(3): 219. http://dx.doi.org/10.1177/074873098129000066

33. Collins B., Kane E.A., Reeves D.C., Akabas M.H., Blau J. Balance of activity between LN(v)s and glutamatergic dorsal clock neurons promotes robust circadian rhythms in Drosophila. Neuron. 2012. 74(4): 706. http://dx.doi.org/10.1016/j.neuron.2012.02.034

34. Hankins M.W., Peirson S.N., Foster R.G. Melanopsin: an exciting photopigment. Trends Neurosci. 2008. 31(1): 27. http://dx.doi.org/10.1016/j.tins.2007.11.002

35. Kursky M.D. The role of 5-hydroxytryptamine (serotonin) in bioenergetic processes: Ph.D (Biol.) thesis. Kyiv, 1971. 

36. Serotonin vs melatonin or balance of nature https://kactaheda.livejournal.com/168608.html

37. Lowrey P.L., Takahashi J.S. Genetics of the mammalian circadian system: Photic entrainment, circadian pacemaker mechanisms, and posttranslational regulation. Annu. Rev. Genet. 2000. 34: 533. http://dx.doi.org/10.1146/annurev.genet.34.1.533

38. Nohales M.A., Kay S.A. Molecular mechanisms at the core of the plant circadian oscillator. Nat. Struct. Mol. Biol. 2016. 23(12): 1061. http://dx.doi.org/10.1038/nsmb.3327

39. Tauber E., Zordan M., Sandrelli F., Pegoraro M., Osterwalder N., Breda C., Daga A., Selmin A., Monger K., Benna C., Rosato E., Kyriacou C.P., Costa R. Natural selection favors a newly derived timeless allele in Drosophila melanogaster. Science. 2007. 316(5833): 1895. http://dx.doi.org/10.1126/science.1138412

40. Chacolla-Huaringa R., Moreno-Cuevas J., Trevino V., Scott S.P. Entrainment of Breast Cell Lines Results in Rhythmic Fluctuations of MicroRNAs. Int. J. Mol. Sci. 2017. 18(7): E1499. http://dx.doi.org/10.3390/ijms18071499

41. Feng D., Liu T., Sun Z., Bugge A., Mullican S.E., Alenghat T., Liu X.S., Lazar M.A. A circadian rhythm orchestrated by histone deacetylase 3 controls hepatic lipid metabolism. Science. 2011. 331(6022): 1315. http://dx.doi.org/10.1126/science.1198125

42. O’Neill J.S., Reddy A.B. Circadian clocks in human red blood cells. Nature. 2011. 469(7331): 498. http://dx.doi.org/10.1038/nature09702

43. Edgar R.S., Green E.W., Zhao Y., van Ooijen G., Olmedo M., Qin X., Xu Y., Pan M., Valekunja U.K., Feeney K.A., Maywood E.S., Hastings M.H., Baliga N.S., Merrow M., Millar A.J., Johnson C.H., Kyriacou C.P., O’Neill J.S., Reddy A.B. Peroxiredoxins are conserved markers of circadian rhythms. Nature. 2012. 485(7399): 459. http://dx.doi.org/10.1038/nature11088

44. Sehadova H., Glaser F.T., Gentile C., Simoni A., Giesecke A., Albert J.T., Stanewsky R. Temperature entrainment of Drosophila’s circadian clock involves the gene nocte and signaling from peripheral sensory tissues to the brain. Neuron. 2009. 64(2): 251. http://dx.doi.org/10.1016/j.neuron.2009.08.026

45. Chen C., Buhl E., Xu M., Croset V., Rees J.S., Lilley K.S., Benton R., Hodge J.J., Stanewsky R. Drosophila Ionotropic Receptor 25a mediates circadian clock resetting by temperature. Nature. 2015. 527(7579): 516. http://dx.doi.org/10.1038/nature16148

46. Simoni A., Wolfgang W., Topping M.P., Kavlie R.G., Stanewsky R., Albert J.T. A mechanosensory pathway to the Drosophila circadian clock. Science. 2014. 343(6170): 525. http://dx.doi.org/10.1126/science.1245710

47. Ozturk N., Ozturk D., Kavakli I.H., Okyar A. Molecular Aspects of Circadian Pharmacology and Relevance for Cancer Chronotherapy. Int. J. Mol. Sci. 2017. 18(10): E2168. http://dx.doi.org/10.3390/ijms18102168

48. Toh K.L., Jones C.R., He Y., Eide E.J., Hinz W.A., Virshup D.M., Ptаcek L.J., Fu Y.H. An hPer2 phosphorylation site mutation in familial advanced sleep phase syndrome. Science. 2001. 291(5506): 1040. http://dx.doi.org/10.1126/science.1057499

49. Patke A., Murphy P.J., Onat O.E., Krieger A.C., Ozcelik T., Campbell S.S., Young M.W. Mutation of the Human Circadian Clock Gene CRY1 in Familial Delayed Sleep Phase Disorder. Cell. 2017. 169(2): 203. http://dx.doi.org/10.1016/j.cell.2017.03.027

50. He Y., Jones C.R., Fujiki N., Xu Y., Guo B., Holder J.L. Jr., Rossner M.J., Nishino S., Fu Y.H. The transcriptional repressor DEC2 regulates sleep length in mammals. Science. 2009. 325(5942): 866. http://dx.doi.org/10.1126/science.1174443

51. Honma S., Kawamoto T., Takagi Y., Fujimoto K., Sato F., Noshiro M., Kato Y., Honma K. Dec1 and Dec2 are regulators of the mammalian molecular clock. Nature. 2002. 419(6909): 841. http://dx.doi.org/10.1016/B978-0-12-405943-6.00010-5

52. Goldfarb L.G., Petersen R.B., Tabaton M., Brown P., LeBlanc A.C., Montagna P., Cortelli P., Julien J., Vital C., Pendelbury W.W. Fatal familial insomnia and familial Creutzfeldt-Jakob disease: disease phenotype determined by a DNA polymorphism. Science. 1992. 258(5083): 806. http://dx.doi.org/10.1126/science.1439789

53. Roenneberg T., Merrow M. The Circadian Clock and Human Health. Curr. Biol. 2016. 26(10): R432. http://dx.doi.org/10.1016/j.cub.2016.04.011

54. Panda S. Circadian physiology of metabolism. Science. 2016. 354(6315): 1008. http://dx.doi.org/10.1126/science.aah4967

55. Nedeltcheva A.V., Scheer F.A. Metabolic effects of sleep disruption, links to obesity and diabetes. Curr. Opin. Endocrinol. Diabetes Obes. 2014. 21(4): 293. http://dx.doi.org/10.1097/MED.0000000000000082

56. James P., Bertrand K.A., Hart J.E., Schernhammer E.S., Tamimi R.M., Laden F. Outdoor Light at Night and Breast Cancer Incidence in the Nurses’ Health Study II. Environ. Health Perspect. 2017. 125(8): 087010. http://dx.doi.org/10.1289/EHP935

57. Huffington A. The Sleep Revolution. Transforming Your Life, One Night at a Time. (Harmony, 2016).

58. Hatori M., Gronfier C., Van Gelder R.N., Bernstein P.S., Carreras J., Panda S., Marks F., Sliney D., Hunt C.E., Hirota T., Furukawa T., Tsubota K. Global rise of potential health hazards caused by blue light-induced circadian disruption in modern aging societies. NPJ Aging Mech. Dis. 2017. (3): 9. http://dx.doi.org/10.1038/s41514-017-0010-2

59. Hirota T., Kay S.A. Identification of small-molecule modulators of the circadian clock. Methods Enzymol. 2015. 551: 267. http://dx.doi.org/10.1016/bs.mie.2014.10.015