Visn. Nac. Akad. Nauk Ukr. 2018. (2):42-52
https://doi.org/10.15407/visn2018.02.042

A.N. Morozovska
Institute of Physics of the National Academy of Sciences of Ukraine, Kyiv
http://orcid.org/0000-0002-8505-458X

ABOUT THE STATE AND PROSPECTS OF FERROICS PHYSICS IN UKRAINE
According to the materials of scientific report at the meeting of the Presidium of NAS of Ukraine, December 13, 2017

The report covers a wide range of important issues concerning the state-of-art of ferroics physics in Ukraine. It is noted that ferroics are substances with a long-range order parameter - spontaneous magnetization (ferromagnetics), polarization (ferroelectrics) or strain (ferroelastics), which arise as a consequence of phase transition taking place with the temperature decrease. Substances having more than one of the interacting long-range orders are called multiferroics. Ferroics and multiferroics are unique objects for fundamental physical research of complex nonlinear processes and phenomena, which occur in them on the micro- and nano-scale. Due to the possibility of controlling the physical properties of ferroics with the help of size effects, nanostructures on their basis are among the most promising for applications in nanoelectronics, nanoelectromechanics, optoelectronics, nonlinear optics and information technologies. The National Academy of Sciences of Ukraine has formed the world-recognized school of ferroics, and its characteristic features are deep integration into the international scientific community and effective collaboration between the scientific groups of the National Academy of Sciences of Ukraine. Ukrainian scholars received a number of priority results that brought the Ukrainian school of ferroics to the forefront of the world. Over the past 10 years, it has been found that the thickness of the strained films, the size and shape of the ferroic and multiferroic nanoparticles are unique tools for controlling their phase diagrams, long-range order parameters, magnitude of susceptibility, magnetoelectric coupling and domain structure characteristics at fixed temperature. Significant influence of the flexo-chemical effect on the phase transition temperature, polar and dielectric properties of nanoparticles is revealed. It is established that the flexocoupling can induce a soft acoustic mode and incommensurate spatially-modulated phases in ferroelectrics. Obtained results are important for understanding of the nonlinear physical processes in nanoferroics, for the interpretation of the scanning probe and tunneling electron microscopy results, as well as for the advanced applications in nanoelectronics.
Keywords: ferroics, multiferroics, phase transitions, size effects, nanomaterials.

 Language of article: ukrainian

REFERENCES

  1. Glinchuk M.D., Ragulya A.V. Nanoferroics. (Kyiv: Naukova Dumka, 2010).
  2. Glinchuk M.D., Ragulya A.V., Stephanovich V.A. Nanoferroics. Springer Series in Materials Science. (Dordrecht: Springer, 2013). https://doi.org/10.1007/978-94-007-5992-3
  3. Ferroics. https://en.wikipedia.org/wiki/Ferroics
  4. Aizu K. Possible species of “ferroelastic” crystals and of simultaneously ferroelectric and ferroelastic crystals. J. Phys. Soc. Jpn. 1969. 27(2): 387. https://doi.org/10.1143/JPSJ.27.387
  5. Aizu K. Possible species of ferromagnetic, ferroelectric, and ferroelastic crystals. Phys. Rev. B. 1970. 2(3): 754. https://doi.org/10.1103/PhysRevB.2.754
  6. Kim Y.-M., Kumar A., Hatt A., Morozovska A.N., Tselev A., Biegalski M.D., Ivanov I., Eliseev E.A., Pennycook S.J., Rondinelli J.M., Kalinin S.V., Borisevich A.Y. Interplay of octahedral tilts and polar order in BiFeO3 films. Adv. Mater. 2013. 25(17): 2497. https://doi.org/1002/adma.201204584
  7. Morozovska A.N., Khist V.V., Glinchuk M.D., Gopalan V., Eliseev E.A. Linear antiferrodistortive-antiferromagnetic effect in multiferroics: physical manifestations. Phys. Rev. B. 2015. 92(5): 054421. https://doi.org/10.1103/PhysRevB.92.054421
  8. Pyatakov A.P., Zvezdin A.K. Magnetoelectric and multiferroic media. Physics-Uspekhi. 2012. 55(6): 557. https://doi.org/10.3367/UFNe.0182.201206b.0593
  9. Karpinsky D.V., Eliseev E.A., Xue F., Silibin M.V., Franz A., Glinchuk M.D., Troyanchuk I.O., Gavrilov S.A., Gopalan V., Chen L.-Q., Morozovska A.N. Thermodynamic potential and phase diagram for multiferroic bismuth ferrite (BiFeO3 ). npj Comput. Mater. 2017. 3: 20 https://doi.org/10.1038/s41524-017-0021-3
  10. Baryakhtar V.G., Gorobets Yu.I. Cylindrical magnetic domains and their lattices. (Kyiv: Naukova Dumka, 1988).
  11. Vysochanskii Yu.M., Slivka V.Yu. Ferroelectrics of Sn2P2S6 family. Properties in the Lifshitz point vicinity. (Lviv, 1994).
  12. Odulov S.G., Soskin M.S., Khizhnyak A.I. Lasers by Dynamic Gratings. (Moscow: Nauka, 1990).
  13. Stasyuk I.V., Levitsky R.R., Saban A.Ya. In: Problems of Modern Statistical Physics. (Kyiv: Naukova Dumka, 1985). P. 274–285.
  14. Kalinin S.V., Morozovska A.N., Chen L.-Q., Rodriguez B.J. Local polarization dynamics in ferroelectric materials (author review). Rep. Prog. Phys. 2010. 73(5): 056502. http://dx.doi.org/10.1088/0034-4885/73/5/056502
  15. Kalinin S.V., Kim Yu., Fong D., Morozovska A.N. Surface screening mechanisms in ferroelectric thin films and its effect on polarization dynamics and domain structures (author review). Rev. Prog. Phys. 2017. https://arxiv.org/abs/1612.08266
  16. Glinchuk M.D., Eliseev E.A., Morozovska A.N., Blinc R. Giant magnetoelectric effect induced by intrinsic surface stress in ferroic nanorods. Phys. Rev. B. 2008. 77(2): 024106. http://dx.doi.org/10.1103/PhysRevB.77.024106
  17. Morozovska A.N., Glinchuk M.D. Reentrant phase in nanoferroics induced by the flexoelectric and Vegard effects. J. Appl. Phys. 2016. 119(9): 094109. http://dx.doi.org/10.1063/1.4942859
  18. Eliseev E.A., Vorotiahin I.S., Fomichov Y.M., Glinchuk M.D., Kalinin S.V., Genenko Yu.A., Morozovska A.N. Defect driven flexo-chemical coupling in thin ferroelectric films. (Accepted to Physical Review B). https://arxiv.org/abs/1708.00904
  19. Eliseev E.A., Morozovska A.N., Glinchuk M.D., Blinc R. Spontaneous flexoelectric/flexomagnetic effect in nanoferroics. Phys. Rev. B. 2009. 79(16): 165433. https://doi.org/10.1103/PhysRevB.79.165433
  20. Zubko P., Catalan G., Tagantsev A.K. Flexoelectric Effect in Solids. Annu. Rev. Mater. Res. 2013. 43(1): 387. http://dx.doi.org/10.1146/annurev-matsci-071312-121634
  21. Freedman D.A., Roundy D., Arias T.A. Elastic effects of vacancies in strontium titanate: Short-and long-range strain fields, elastic dipole tensors, and chemical strain. Phys. Rev. B. 2009. 80(6): 064108. http://dx.doi.org/10.1103/PhysRevB.80.064108
  22. Zhu J., Han W., Zhang H., Yuan Z., Wang X., Li L., Jin Ch.Phase coexistence evolution of nano BaTiO3 as function of particle sizes and temperatures. J. Appl. Phys. 2012. 112(6): 064110. http://dx.doi.org/10.1063/1.4751332
  23. Eliseev E.A., Morozovska A.N., Glinchuk M.D., Kalinin S.V. Missed surface waves in non-piezoelectric solids. Phys. Rev. B. 2017. 96(4): 045411. https://doi.org/10.1103/PhysRevB.96.045411
  24. Morozovska A.N., Vysochanskii Yu.M., Varenik O.V., Silibin M.V., Kalinin S.V., Eliseev E.A. Flexocoupling impact on the generalized susceptibility and soft phonon modes in the ordered phase of ferroics. Phys. Rev. B. 2015. 92(9): 094308. http://dx.doi.org/10.1103/PhysRevB.92.094308
  25. Morozovska A.N., Eliseev E.A., Scherbakov C.M., Vysochanskii Yu.M. The influence of elastic strain gradient on the upper limit of flexocoupling strength, spatially-modulated phases and soft phonon dispersion in ferroics. Phys. Rev. B. 2016. 94(17): 174112. http://dx.doi.org/10.1103/PhysRevB.94.174112
  26. Morozovska A.N., Glinchuk M.D., Eliseev E.A., Vysochanskii Yu.M. Flexocoupling-induced soft acoustic mode and the spatially modulated phases in ferroelectrics. Phys. Rev. B. 2017. 96(9): 094111. http://dx.doi.org/10.1103/PhysRevB.96.094111
  27. Hlinka J., Quilichini M., Currat R., Legrand J.F. Dynamical properties of the normal phase of betaine calcium chloride dihydrate. I. Experimental results. J. Phys.: Condens. Matter. 1996. 8(43): 8207. http://dx.doi.org/10.1088/0953-8984/8/43/016
  28. Morozovska A.N., Eliseev E.A., Strikha M.V. Ballistic conductivity of graphene channel with p-n junction on ferroelectric domain wall. Appl. Phys. Lett. 2016. 108(23), 232902. http://dx.doi.org/10.1063/1.4953226
  29. Kurchak A.I., Eliseev E.A.,. Kalinin S.V., Strikha M.V., Morozovska A.N. P-N junctions dynamics in graphene channel induced by ferroelectric domains motion. Phys. Rev. Appl. 2017. 8(2): 024027. http://dx.doi.org/10.1103/PhysRevApplied.8.024027
  30. Morozovska A.N., Kurchak A.I., Strikha M.V. Graphene exfoliation at ferroelectric domain wall induced by piezoeffect: impact on the conduction of graphene channel. Phys. Rev. Appl. 2017. 8(5): 054004 https://doi.org/10.1103/PhysRevApplied.8.054004
  31. Jung I., Son J.Y. A nonvolatile memory device made of a graphene nanoribbon and a multiferroic BiFeO3 gate dielectric layer. Carbon. 2012. 50(10):3854. https://doi.org/10.1016/j.carbon.2012.04.027
  32. Kim W.Y., Kim H.-D., Kim T.-T., Park H.-S., Lee K.H., Choi H.J., Lee S.H., Son J.-H., Park N.-K., Min B.K. Graphene-ferroelectric metadevices for nonvolatile memory and reconfigurable logic-gate operations. Nat. Commun. 2016. 7: 10429. http://dx.doi.org/10.1038/ncomms10429
  33. Yang S.M., Morozovska A.N., Kumar R., Eliseev E.A., Cao Y., Mazet L., Balke N., Jesse S., Vasudevan R., Dubourdieu C., Kalinin S.V. Mixed electrochemical-ferroelectric states in nanoscale ferroelectrics. Nat. Phys. 2017. 13(8): 812. http://dx.doi.org/10.1038/nphys4103
  34. Morozovska A.N., Eliseev E.A., Morozovsky N.V., Kalinin S.V. Ferroionic states in ferroelectric thin films. Phys. Rev. B. 2017. 95(19): 195413. http://dx.doi.org/10.1103/PhysRevB.95.195413
  35. Morozovska A.N., Eliseev E.A., Kurchak A.I., Morozovsky N.V., Vasudevan R.K., Strikha M.V., Kalinin S.V. Effect of surface ionic screening on polarization reversal scenario in ferroelectric thin films: crossover from ferroionic to antiferroionic states. Phys. Rev. B. 2017. 96(24): 245405. http://dx.doi.org/10.1103/PhysRevB.96.245405