Visn. Nac. Akad. Nauk Ukr. 2018. (6):75-85

A.M. Goltsev
Institute for Problems of Cryobiology and Cryomedicine of the National Academy of Sciences of Ukraine, Kharkiv


The article explains the core messages of the research of the Nobel Prize winners in chemistry for 2017 Jacques Dubochet, Joachim Frank, and Richard Henderson. The development of cryo-electron microscopy research is presented in historical retrospective. The importance of this discovery for the current scientific community is substantiated. The main advantages of using a high-resolution cryo-electron microscopy for determining the structure of biomolecules in solution is outlined. The review considers the practical importance of this research for medicine and biotechnology, namely in designing novel therapeutic drugs and identification of new diseases.
Keywords: Nobel Prize, cryo-electron microscopy, image, structure of biomolecule, novel drugs.


  1. Robards A.W., Sleytr U.B. Low temperature methods in biological electron microscopy (Practical methods in electron microscopy). (Amsterdam–New York–Oxford: Elsevier, 1985).
  2. Author’s certificate USSR No. 399937. Kabylyakov V.A., Kapreliantz A.S., Pushkar N.S. et al. An electron microscope-analyzer of a translucent type, for example, of biological objects. 1973.
  3. Author’s certificate USSR No. 557288. Pankov E.Ya., Kapreliantz A.S., Zhuravlev V.S., Chemeris I.I., Kabylyakov V.A. Method for processing biological samples for cryo-ultratomy. 1977.
  4. Author’s certificate USSR No. 690360. Kaprelyants A.S., Zhuravlev V.S., Repin N.V. Cryo-ultratome.1979.
  5. Author’s certificate USSR No. 1157597. Repin N.V., Skornyakov B.A., Khramtsov V.P., Vaysman A.L. Device for fracturing biological objects in vacuum. 22.01.1985.
  6. Itkin Yu.A., Bronshtein V.L., Rozanov L.F. Study of the effect of ice structure on dehydration process and intracellular crystallization during freezing of cell suspension. Kriobiologiya i Kriomeditsina (Cryobiology and Cryomedicine). 1977. (3): 35.
  7. Repin N.V. Study of extra-and intracellular crystallization in human erythrocytes under different cooling conditions. Kriobiologiya (Cryobiology). 1986. (3): 31.
  8. Zinchenko A.V., Mank V.V., Ovcharenko F.D., Repin N.V. Skornyakov B.A. Structure and phase states of water-glycerol solutions. Reports of the National Academy of Sciences of Ukraine. 1982. Ser. B. (8): 38.
  9. Yurchenko T.N., Kozlova V.F., Skornyakov B.A., Strona V.I., Repin N.V. Influence of cryoprotectants on biological systems. (Kyiv: Naukova Dumka, 1989).
  10. Repin N.V. To the question about two-step rapid freezing method. Estimation of aqueous membrane permeability in erythrocytes at temperature exposure stage. CryoLetters. 2009. (4): 251.
  11. Haas D.J. X-ray studies on lysozyme crystals at –50°C. Acta Cryst. B. 1968. 24: 604. https://doi.org/10.1107/S056774086800292X
  12. Haas D.J., Rossmann M.G. Crystallographic studies on lactate dehydrogenase at –75 degrees C. Acta Cryst. 1970. 26: 998. https://doi.org/10.1107/S0567740870003485
  13. Taylor K.A. Glaeser R.M. Electron diffraction of frozen, hydrated protein crystals. Science. 1974. 186(4168): 1036. http://dx.doi.org/10.1126/science.186.4168.1036
  14. Taylor K.A., Glaeser R.M. Electron microscopy of frozen hydrated biological specimens. J. Ultrastruct. Res. 1976. 55(3): 448. http://doi.org/10.1016/S0022-5320(76)80099-8
  15. Schmidt P.J. Basile J. Luyet and the beginnings of transfusion cryobiology. Transfus. Med. Rev. 2006. 20(3): 242. https://doi.org/10.1016/j.tmrv.2006.03.004
  16. Dowell L.G., Rinfret A.P. Low-temperature forms of ice as studied by X-ray diffraction. Nature. 1960. 188(4757): 1144. http://doi.org/10.1038/1881144a0
  17. Brüggeller P., Mayer E. Complete vitrification in pure liquid water and dilute aqueous solutions. Nature. 1980. 288(5791): 569. http://doi.org/10.1038/288569a0
  18. Repin N.V., Skornyakov B.A. Methodological features and technical support of the method of freeze-fracturing. Kriobiologiya i Kriomeditsina (Cryobiology and Cryomedicine). 1982. 10: 89.
  19. Dubochet J., Adrian M., Chang J.-J., Homo J.-C., Lepault J., McDowall A.W., Schultz P. Cryo-electron microscopy of vitrified specimens. Q. Rev. Biophys. 1988. 21(2): 129. http://doi.org/10.1017/S0033583500004297
  20. Adrian M., Dubochet J., Lepault J., McDowall A.W. Cryo-electron microscopy of viruses. Nature. 1984. 308(5954): 32. http://doi.org/10.1038/308032a0
  21. Beck M., Baumeister W. Cryo-electron tomography: can it reveal the molecular sociology of cells in atomic detail? Trends Cell Biol. 2016. 26(11): 825. http://doi.org/10.1016/j.tcb.2016.08.006
  22. Frank J. Averaging of low exposure electron micrographs of non-periodic objects. Ultramicroscopy. 1975. 1(2): 159. http://doi.org/10.1016/S0304-3991(75)80020-9
  23. Saxton W.O., Frank J. Motif detection in quantum noise-limited electron micrographs by cross-correlation. Ultramicroscopy. 1977. 2: 219. http://doi.org/10.1016/S0304-3991(76)91385-1
  24. Frank J., Goldfarb W., Eisenberg D., Baker T.S. Reconstruction of glutamine synthetase using computer averaging. Ultramicroscopy. 1978. (3): 283. http://doi.org/10.1016/S0304-3991(78)80038-2
  25. van Heel M., Frank J. Use of multivariate statistics in analysing the images of biological macromolecules. Ultramicroscopy. 1981. (6): 187. http://doi.org/10.1016/0304-3991(81)90059-0
  26. Frank J., van Heel M. Correspondence analysis of aligned images of biological particles. J. Mol. Biol. 1982. (161): 134. http://doi.org/10.1016/0022-2836(82)90282-0
  27. Radermacher M., Wagenknecht T., Verschoor A., Frank J. A new 3D reconstruction scheme applied to the 50s ribosomal subunit of E. coli. J. Microsc. 1986. (141): RP1. http://doi.org/10.1111/j.1365-2818.1986.tb02693.x
  28. Radermacher M., Wagenknecht T., Verschoor A., Frank J. Three-dimensional reconstruction from a single-exposure, random conical tilt series applied to the 50S ribosomal subunit of Escherichia coli. J. Microsc. 1987. (146): 113. http://doi.org/10.1111/j.1365-2818.1987.tb01333.
  29. Radermacher M. Dreidimensionale Rekonstruktion bei kegelförmiger Kippung im Elektronenmikroskop. Thesis, Technical University, Munich, 1980. http://www.uvm.edu/%7Emraderma/thesis/M_Radermacher_PhD_Thesis.pdf
  30. Henderson R., Baldwin J.M., Ceska T.A., Zemlin F., Beckmann E., Downing K.H. Model for the structure of bacteriorhodopsin based on high-resolution electron cryo-microscopy. J. Mol. Biol. 1990. (213): 899. http://doi.org/10.1016/S0022-2836(05)80271-2
  31. Nogales E., Wolf S.G., Downing K.H. Structure of the αβ tubulin dimer by electron crystallography. Nature. 1998. (391): 199. http://doi.org/10.1038/34465
  32. Murata K., Mitsuoka K., Hiral T., Walz T., Agre P., Heymann J.B., Engel A., Fujiyoshi Y. Structural determinants of water permeation through aquaporin-1. Nature. 2000. (407): 599. http://doi.org/10.1038/35036519
  33. Scheres S.H.W., Gao H., Valle M., Herman G.T., Eggermont P.P.B., Frank J., Carazo J.M. Disentangling conformational states of macromolecules in 3D-EM through likelihood optimization. Nature Methods. 2007. (4): 27. http://doi.org/10.1038/nmeth992
  34. Oikonomou C.M., Jensen G.J. Cellular electron cryotomography: toward structural biology in situ. Annu. Rev. Biochem. 2017. (86): 873. http://doi.org/10.1146/annurev-biochem-061516-044741
  35. Rubinstein J.L. Cryo-EM captures the dynamics of ion channel opening. Cell. 2017. (168): 341. http://doi.org/10.1016/j.cell.2017.01.011
  36. Fischer N., Konevega A.L., Wintermeyer W., Rodnina M.V., Stark H. Ribosome dynamics and tRNA movement by time-resolved electron cryomicroscopy. Nature. 2010. (466): 329. http://doi.org/10.1038/nature09206
  37. Hite R.K., MacKinnon R. Structural titration of Slo2.2, a Na+-dependent K+ channel. Cell. 2017. (168): 390. http://doi.org/10.1016/j.cell.2016.12.030
  38. Zhao J., Benlekbir S., Rubinstein J.L. Electron cryomicroscopy observation of rotational states in a eukaryotic V-ATPase. Nature. 2015. (521): 241. http://doi.org/10.1038/nature14365
  39. Dashti A., Ben Hail D., Mashayekhi G., Schwander P., des Georges A., Frank J., Ourmazd A. Conformational dynamics and energy landscapes of ligand binding in RyR1. bioRxiv, 2017. http://doi.org/10.1101/167080
  40. Goltsev A.N., Popova K.N., Sirous M.A. Cryopreservation as optimizing factor in therapeutic effect of products of embryofetoplacental complex (PEFPC). Part 1. Pathology of autoimmune genesis as assessment model of therapeutic effect of PEFPC application. Probl. Criobiol. 2006. 16(3): 326.
  41. Grischenko V.I., Goltsev A.N. Transplantation of the products of embryofetoplacental complex. From understanding of mechanism of the effect to increasing the efficiency of application. Probl. Cryobiol. 2002. (1): 54.
  42. Meng X.-Y., Zhang H.-X., Mezei M., Cui M. Molecular Docking: A powerful approach for structure-based drug discovery. Curr. Comput. Aided Drug Des. 2011. 7(2): 146. http://doi.org/10.2174/157340911795677602
  43. Sweeney P., Park H., Baumann M., Dunlop J., Frydman J. et al. Protein misfolding in neurodegenerative diseases: implications and strategies. Transl. Neurodegener. 2017. 6: 6. http://doi.org/10.1186/s40035-017-0077-5
  44. Vozianov A.F., Butenko A.K., Zak K.P. Cytokines. Biological and antitumour properties. (Kyiv: Naukova Dumka, 1998).