Visn. Nac. Akad. Nauk Ukr. 2018. (8):76-80
https://doi.org/10.15407/visn2018.08.076    

I.V. Kyryllin
Akhiezer Institute for Theoretical Physics of the National Science Center “Kharkov Institute of Physics and Technology” of the National Academy of Sciences of Ukraine, Kharkiv
https://orcid.org/0000-0003-3625-7521 
Scopus Author ID: 36844175200

MECHANISMS OF HIGH-ENERGY CHARGED PARTICLE BEAM DEFLECTION BY BENT CRYSTALS. THEORY AND CERN EXPERIMENTS
According to the materials of scientific report at the meeting of the Presidium of NAS of Ukraine, May 30, 2018

The deflection of high-energy charged particles is an important task of accelerator physics. For deflection of such particles, electromagnetic systems or bent crystals can be used. Both variants have their own advantages and disadvantages. The advantages of bent crystals are compact size, no need for cooling and low electricity consumption. Due to these advantages, bent crystals are used in many accelerating centers for the removal of beams from ring accelerators and for beam collimation.
Keywords: high-energy charged particles, bent crystals, deflection of charged particles.

Language of article: ukrainian

 

REFERENCES

1.     Lindhard J. Influence of crystal lattice on motion of energetic charged particles. Danske Vid. Selsk. Mat. Fys. Medd. 1965. 34: 14.

2.     Tsyganov E.N. Some aspects of the mechanism of a charge particle penetration through a monocrystal. Technical Report Fermilab. 1976 (preprint TM-682).

3.     Tsyganov E.N. Estimates of cooling and bending processes for charged particle penetration through a mono crystal. Technical Report Fermilab. 1976 (preprint TM-684).

4.     Taratin A.M., Vorobiev S.A. Volume reflection of high-energy charged particles in quasi-channeling states in bent crystals. Phys. Lett. A. 1987. 119(8): 425. http://dx.doi.org/10.1016/0375-9601(87)90587-1

5.     Grinenko A.A., Shul’ga N.F. Turning a beam of high-energy charged particles by means of scattering by atomic rows of a curved crystal. Sov. JEPT Lett. 1991. 54: 524.

6.     Shul’ga N.F., Greenenko A.A. Multiple scattering of ultrahigh-energy charged particles on atomic strings of a bent crystal. Phys. Lett. B. 1995. 353(2–3): 373. https://doi.org/10.1016/0370-2693(95)00496-8

7.     Scandale W. et al. High-efficiency deflection of high-energy protons through axial channeling in a bent crystal. Phys. Rev. Lett. 2008. 101:164801. https://doi.org/10.1103/PhysRevLett.101.164801

8.     Scandale W. et al. High-efficiency deflection of high-energy negative particles through axial channeling in a bent crystal. Phys. Lett. B. 2009. 680(4): 301. https://doi.org/10.1016/j.physletb.2009.09.009

9.     Chesnokov Yu.A., Kirillin I.V., Scandale W., Shul’ga N.F., Truten’ V.I. About the probability of close collisions during stochastic deflection of positively charged particles by a bent crystal. Phys. Lett. B. 2014. 731: 118. https://doi.org/10.1016/j.physletb.2014.02.024

10. Scandale W. et al. High-efficiency deflection of high energy protons due to channeling along the <110> axis of a bent silicon crystal. Phys. Lett. B. 2016. 760: 826. https://doi.org/10.1016/j.physletb.2016.07.072

11. Bandiera L. et. al. Relaxation of axially confined 400 GeV/c protons to planar channeling in a bent crystal. Eur. Phys. J. C. 2016. 76: 80. https://doi.org/10.1140/epjc/s10052-016-3899-x

12. Kirillin I.V., Shul’ga N.F., Bandiera L., Guidi V., Mazzolari A. Influence of incoherent scattering on stochastic deflection of high-energy negative particle beams in bent crystals. Eur. Phys. J. C. 2017. 77: 117. https://doi.org/10.1140/epjc/s10052-017-4694-z

13. Kirillin I.V. On the dependence of the efficiency of stochastic mechanism of charged particle beam deflection in a bent crystal on the particle energy. Probl. Atom. Sci. Tech. 2017. 109(3): 67.