Visn. Nac. Akad. Nauk Ukr. 2018. (10):34-43

V.V. Pavlishchuk
Pisazhevsky Institute of Physical Chemistry of the National Academy of Sciences of Ukraine, Kyiv

According to the materials of scientific report at the meeting of the Presidium of NAS of Ukraine,September 12, 2018

The results of studies on polynuclear complexes molecular magnetism in Pisarzhevsky Institute of Physical Chemistry of NAS of Ukraine are elucidated. Some original routes for synthesis of polynuclear complexes are elaborated which resulted in isolation of several hundred new multispin systems. Special attention is paid to the practical implementation of results. In particular, highly sensitive materials for non-destructive control of nuclear power station units and aircrafts, nanocomposites for magnetic expressive separation of biologically active substances and cancer diagnostics are developed.
Keywords: molecular magnetism, polynuclear complexes, multispin systems

Language of article: ukrainian



  1. Sessoli R., Gatteschi D., Caneschi A., Novak M.A. Magnetic bistability in a metal-ion cluster. Nature. 1993. 365: 141.
  2. Gatteschi D., Sessoli R., Villain J. Molecular Nanomagnets. (New York: Oxford University Press, 2006). P. 47–159.
  3. Pavlishchuk V.V. Molecular magnetism of the polynuclear complexes of 3D transition metals. Theor. Exp. Chem. 1997. 33(6): 303.  
  4. Pavlishchuk V.V., Kolotilov S. V., Addison A.W., Prushan M.J., Butcher R.J., Thompson L.K. Mono- and Trinuclear Nickel(II) Complexes with Sulfur-Containing Oxime Ligands:  Uncommon Templated Coupling of Oxime with Nitrile. Inorg. Chem. 1999. 38(8): 1759.
  5. Pavlishchuk V.V., Kolotilov S.V., Addison A.W., Prushan M.J., Butcher R.J., Thompson L.K. A new class of macrocyclic complexes formed via nickel-promoted macrocyclisation of dioxime with dinitrile. Chem. Commun. 2002. (5): 468.
  6. Gavrilenko K.S., Vértes A., Vanko G., Kiss L.F., Addison A.W., Weyhermüller T., Pavlishchuk V.V. Synthesis, magnetochemistry and spectroscopy of heterometallic trinuclear basic acetates [Fe2M μ3-O(CF3COO)6(H2O)3]·H2O (M = Mn, Co, Ni). Eur. J. Inorg. Chem. 2002. (12): 3356.<3347::AID-EJIC3347>3.0.CO;2-R
  7. Pavlishchuk V.V., Gavrilenko K.S., Kolotilov S.V. Spin frustration and competing magnetic exchange interactions in polynuclear complexes of 3d metals. Theor. Exp. Chem. 2002. 38(1): 21.
  8. Pavlishchuk V.V., Birkelbach F., Weyhermüller T., Wieghardt K., Chaudhuri P. Polynuclear Complexes of the Pendent-Arm Ligand 1,4,7-Tris(acetophenoneoxime)-1,4,7-triazacyclononane. Inorg. Chem. 2002. 41(17): 4405.
  9. Pavlishchuk V.V., Kolotilov S.V., Addison A.W., Prushan M.J., Schollmeyer D., Thompson L.K., Weyhermüller T., Goreshnik E.A. Structural, magnetic and related attributes of some oximate-bridged tetranuclear nickel (II) rhombs and a dinuclear congener. Dalton Trans. 2003. 8: 1588.
  10. Pavlishchuk V.V., Kolotilov S.V., Addison A.W., Prushan M.J., Schollmeyer D., Thompson L.K., Goreshnik E.A. A Tetrameric nickel (II) "chair" with both antiferromagnetic internal coupling and ferromagnetic spin alignment. Angew. Chem. Int. Ed. 2001. 40(24): 4734.<4734::AID-ANIE4734>3.0.CO;2-D
  11. Gavrilenko K.S., Punin S.V., Cador O., Golhen S., Ouahab L., Pavlishchuk V.V. Synthesis, structure, and magnetism of heterometallic carboxylate complexes [MnIII2MII4O2(PhCOO)10(DMF)4], M = MnII, CoII, NiII. Inorg. Chem. 2005. 44(16): 5903.
  12. Gavrilenko K.S., Punin S.V., Cador O., Golhen S., Ouahab L., Pavlishchuk V.V. In situ generation of carboxylate: an efficient strategy for a one-pot synthesis of homo- and heterometallic polynuclear complexes. J. Am. Chem. Soc. 2005. 127(35): 12246.
  13. Gavrilenko K.S., Cador O., Bernot K., Rosa P., Sessoli R., Golhen S., Pavlishchuk V.V., Ouahab L. Delicate crystal structure changes govern the magnetic properties of 1d coordination polymers based on 3d metal carboxylates. Chem. Eur. J. 2008. 14(7): 2034.
  14. Lytvynenko A.S., Kolotilov S.V., Cador O., Gavrilenko K.S., Golhen S., Ouahab L., Pavlishchuk V.V. Porous 2D coordination polymeric formate built up by Mn(II) linking of Fe3O units: influence of guest molecules on magnetic properties. Dalton Trans. 2009. 18: 3503.
  15. Polunin R.A., Kolotilov S.V., Kiskin M.A,, Cador O., Golhen S., Shvets O.V., Ouahab L., Dobrokhotova Z.V., Ovcharenko V.I., Eremenko I.L., Novotortsev V.M., Pavlishchuk V.V. Structural flexibility and sorption properties of 2D porous coordination polymers constructed from trinuclear heterometallic pivalates and 4,4'-bipyridine. Eur. J. Inorg. Chem. 2011. 32: 4985.
  16. Liu J.-L., Chen Y.-C., Tong M.-L. Symmetry strategies for high performance lanthanide-based single-molecule magnets. Chem. Soc. Rev. 2018. 47(7): 2431.
  17. Benelli C., Gatteschi D. Introduction to Molecular Magnetism. From Transition Metals to Lanthanides. (Wiley-VCH, 2015).
  18. Pavlishchuk V.V. Influence of structure on magnetic and photoluminescent properties of coordination compounds of 3d and 4f metals and nanocomposites based on them. Theor. Exp. Chem. 2017. 53(5): 296.
  19.  Ostrowska M., Fritsky I.O., Gumienna-Kontecka E., Pavlishchuk A.V. Metallacrown-based compounds: applications in catalysis, luminescence, molecular magnetism and adsorption. Coord. Chem. Rev. 2016. 327–328: 304.
  20. Pavlishchuk A.V., Kolotilov S.V., Zeller M., Lofland S.E., Thompson L.K., Addison A.W., Hunter A.D. High Nuclearity Assemblies and One-Dimensional (1D) Coordination Polymers Based on Lanthanide–Copper 15-Metallacrown-5 Complexes (LnIII = Pr, Nd, Sm, Eu). Inorg. Chem. 2017. 56(21): 13152.
  21. Pavlishchuk A.V., Kolotilov S.V., Zeller M., Thompson L.K., Addison A.W. Formation of coordination polymers or discrete adducts via reactions of gadolinium(III)-copper(II) 15-metallacrown-5 complexes with polycarboxylates: synthesis, structures and magnetic properties. Inorg. Chem. 2014. 53(3): 1320.
  22. Vasylenko I.V., Gavrylenko K.S., Il'yin V.G., Golub V., Goloverda G., Kolesnichenko V., Addison A.W., Pavlishchuk V.V. The metamorphosis of heterometallic trinuclear antiferromagnetic complexes into nano-sized superparamagnetic spinels. Mater. Chem. Phys. 2010. 121(1-2): 47.
  23. Vasylenko I.V., Gavrilenko K.S., Kotenko I.E., Cador O., Ouahab L., Pavlishchuk V.V. Solvothermal preparation and magnetic properties of monodisperse superparamagnetic nanosized ferrites MFe2O4 (M = Mn, Co, Ni). Theor. Exp. Chem. 2014. 50(4): 226.
  24. Dolgykh L.Y., Stolyarchuk,I.L., Staraya L.A., Vasylenko I.V., Pyatnitsky Y.I. Catalytic properties of MnO, Fe2O3, and MnFe2O4 in the steam reforming of ethanol. Theor. Exp. Chem. 2014. 50(4): 245. 
  25. Iefremenko D.S., Telegeeva P.G., Yakovenko A.V., Vasilenko I.V., Telegeev G.D., Maluta S.S. Using CoFe2O4 nanoparticles for targeted delivery of methotrexate in osteosarcoma cells. Dopov. Nac. Akad. Nauk Ukr. 2013. (6): 157.
  26. Vasylenko I.V., Yakovenko A.V., Yefremenko D.S., Telegeeva P.G., Dybkov M.V., Telegeev G.D. Magnetic-luminescent nanocomposite CoFe2O4@SiO2@Gd2O3 : Eu2O3 : synthesis, characterization, and engulfment by macrophages. Dopov. Nac. Akad. Nauk Ukr. 2016. (10): 88.
  27. Kolotilov S.V., Boltovets P.N., Snopok B.A., Pavlishchuk V.V. Nanosized magnetic composite for extraction of γ-immunoglobulins from biological media. Theor. Exp. Chem. 2006. 42(4): 211. 
  28. Lehmann J., Gaita-Ariño A., Coronado E., Loss D. Quantum computing with molecular spin systems. J. Mater. Chem. 2009. 19: 1672.
  29. Sessoli R. Toward the quantum computer: magnetic molecules back in the race. ACS Cent. Sci. 2015. 1(9): 473.
  30. Zheng Y.-Z., Evangelisti M., Tuna F., Winpenny R.E.P. Co-Ln mixed metal phosphonate grids and cages as molecular magnetic refrigerants. J. Am. Chem. Soc. 2012. 134(2): 1057.
  31. Sharples J.W., Collison D., McInnes E., Schnack J., Palacios E., Evangelisti M. Quantum signatures of a molecular nanomagnet in direct magnetocaloric measurements. Nat. Commun. 2014. 5: 5321.