Visn. Nac. Akad. Nauk Ukr. 2019. (12): 3-19

S.I. Romaniuk, S.V. Komisarenko
Palladin Institute of Biochemistry of the National Academy of Sciences of Ukraine, Kyiv

Nobel Prize in Physiology or Medicine for 2019

The 2019 Nobel Prize in Physiology or Medicine was awarded to two American scientists — William G. Kaelin, Jr. from Harvard University and Gregg L. Semenza from Johns Hopkins University — and British researcher Sir Peter J. Ratcliffe of Oxford University “for their discoveries of how cells sense and adapt to oxygen availability.” The work of this year's Nobel laureates laid the groundwork for understanding how oxygen levels affect cellular metabolism and physiological functions. Their research paves the way for new strategies to fight anemia, cancer and many other diseases.

Language of article: ukrainian

Full text (PDF)


  1. Citation Laureates 2019.
  2. The Nobel Prize in Physiology or Medicine 2019. Press release.
  3. William Kaelin Jr. Wikipedia.
  4. Carolyn Kaelin. Wikipedia.
  5. Peter J. Ratcliffe. Wikipedia.
  6. Gregg L. Semenza. Wikipedia.
  7. Johnson R.S. Scientific Background. How cells sense and adapt to oxygen availability.
  8. Belitser V.A., Tsybakova E.T. On the mechanism of phosphorylation associated with respiration. Biochemistry. 1939. 4(5): 516.
  9. Miyake T., Kung C.K., Goldwasser E. Purification of human erythropoietin. J. Biol. Chem. 1977. 252(15): 5558.
  10. Bondurant M.C., Koury M.J. Anemia induces accumulation of erythropoietin mRNA in the kidney and liver. Mol. Cell Biol. 1986. 6(7): 2731. DOI:
  11. Semenza G.L., Nejfelt M.K., Chi S.M., Antonarakis S.E. Hypoxia-inducible nuclear factors bind to an enhancer element located 3' to the human erythropoietin gene. Proc. Natl. Acad. Sci. USA. 1991. 88(13): 5680. DOI:
  12. Beck I., Ramirez S., Weinmann R., Caro J. Enhancer element at the 3'-flanking region controls transcriptional response to hypoxia in the human erythropoietin gene. J. Biol. Chem. 1991. 266(24): 15563.
  13. Semenza G.L., Wang G.L. A nuclear factor induced by hypoxia via de novo protein synthesis binds to the human erythropoietin gene enhancer at a site required for transcriptional activation. Mol. Cell. Biol. 1992. 12(12): 5447. DOI:
  14. Maxwell P.H., Pugh C.W., Ratcliffe P.J. Inducible operation of the erythropoietin 3' enhancer in multiple cell lines: evidence for a widespread oxygen-sensing mechanism. Proc. Natl. Acad. Sci. USA. 1993. 90(6): 2423. DOI:
  15. Wang G.L., Semenza G.L. General involvement of hypoxia-inducible factor 1 in transcriptional response to hypoxia. Proc. Natl. Acad. Sci. USA. 1993. 90(9): 4304. DOI:
  16. Wang G.L., Semenza G.L. Purification and characterization of hypoxia-inducible factor 1. J. Biol. Chem. 1995. 270(3): 1230. DOI: 10.1074/jbc.270.3.1230
  17. Wang G.L., Jiang B.H., Rue E.A., Semenza G.L. Hypoxia-inducible factor 1 is a basic-helix-loop-helix-PAS heterodimer regulated by cellular O2 tension. Proc. Natl. Acad. Sci. USA. 1995. 92(12): 5510. DOI:
  18. Ema M., Taya S., Yokotani N., Sogawa K., Matsuda Y., Fujii-Kuriyama Y. A novel bHLH-PAS factor with close sequence similarity to hypoxia-inducible factor 1alpha regulates the VEGF expression and is potentially involved in lung and vascular development. Proc. Natl. Acad. Sci. USA. 1997. 94(9): 4273. DOI:
  19. Flamme I., Frohlich T., von Reutern M., Kappel A., Damert A., Risau W. HRF, a putative basic helixloop-helix-PAS-domain transcription factor is closely related to hypoxia-inducible factor-1 alpha and developmentally expressed in blood vessels. Mech. Dev. 1997. 63(1): 51. DOI:
  20. Hogenesch J.B., Chan W.K., Jackiw V.H., Brown R.C., Gu Y.Z., Pray-Grant M., Perdew G.H., Bradfield C.A. Characterization of a subset of the basic-helix-loop-helix-PAS superfamily that interacts with components of the dioxin signaling pathway. J. Biol. Chem. 1997. 272(13): 8581. DOI:
  21. Tian H., McKnight S.L., Russell D.W. Endothelial PAS domain protein 1 (EPAS1), a transcription factor selectively expressed in endothelial cells. Genes Dev. 1997. 11(1): 72. DOI:
  22. Fandrey J. Oxygen-dependent and tissue-specific regulation of erythropoietin gene expression. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2004. 286(6), R977. DOI:
  23. Pugh C.W., O'Rourke J.F., Nagao M., Gleadle J.M., Ratcliffe P.J. Activation of hypoxia-inducible factor-1; definition of regulatory domains within the alpha subunit. J. Biol. Chem. 1997. 272(17): 11205. DOI:
  24. Salceda S., Caro J. Hypoxia-inducible factor 1alpha (HIF-1alpha) protein is rapidly degraded by the ubiquitin-proteasome system under normoxic conditions. Its stabilization by hypoxia depends on redox-induced changes. J. Biol. Chem. 1997. 272(36): 22642. DOI:
  25. Huang L.E., Gu J., Schau M., Bunn H.F. Regulation of hypoxia-inducible factor 1alpha is mediated by an O2-dependent degradation domain via the ubiquitin-proteasome pathway. Proc. Natl. Acad. Sci. USA. 1998. 95(14): 7987. DOI:
  26. Iliopoulos O., Kibel A., Gray S., Kaelin W.G. Jr. Tumour suppression by the human von Hippel-Lindau gene product. Nat. Med. 1995. 1(8): 822. DOI:
  27. Iliopoulos O., Levy A.P., Jiang C., Kaelin W.G. Jr., Goldberg M.A. Negative regulation of hypoxia inducible genes by the von Hippel-Lindau protein. Proc. Natl. Acad. Sci. USA. 1996. 93(20): 10595. DOI:
  28. Duan D.R., Pause A., Burgess W.H., Aso T., Chen D.Y., Garrett K.P., Conaway R.C., Conaway J.W., Linehan W.M., Klausner R.D. Inhibition of transcription elongation by the VHL tumor suppressor protein. Science. 1995. 269(5229): 1402. DOI:
  29. Kibel A., Iliopoulos O., DeCaprio J.A., Kaelin W.G. Jr. Binding of the von Hippel-Lindau tumor suppressor protein to Elongin B and C. Science. 1995. 269(5229): 1444. DOI:
  30. Pause A., Lee S., Worrell R.A., Chen D.Y., Burgess W.H., Linehan W.M., Klausner R.D. The von Hippel-Lindau tumor-suppressor gene product forms a stable complex with human CUL-2, a member of the Cdc53 family of proteins. Proc. Natl. Acad. Sci. USA. 1997. 94(6): 2156. DOI:
  31. Lonergan K.M., Iliopoulos O., Ohh M., Kamura T., Conaway R.C., Conaway J.W., Kaelin W.G. Jr. Regulation of hypoxia-inducible mRNAs by the von Hippel-Lindau tumor suppressor protein requires binding to complexes containing elongins B/C and Cul2. Mol. Cell. Biol. 1998. 18(2): 732. DOI:
  32. Maxwell P.H., Wiesener M.S., Chang G.W., Clifford S.C., Vaux E.C., Cockman M.E., Wykoff C.C., Pugh C.W., Maher E.R., Ratcliffe P.J. The tumour suppressor protein VHL targets hypoxia-inducible factors for oxygen-dependent proteolysis. Nature. 1999. 399(6733): 271. DOI:
  33. Ivan M., Kondo K., Yang H., Kim W., Valiando J., Ohh M., Salic A., Asara J.M., Lane W.S., Kaelin W.G. Jr. HIFalpha targeted for VHL-mediated destruction by proline hydroxylation: implications for O2 sensing. Science. 2001. 292(5516): 464. DOI:
  34. Jaakkola P., Mole D.R., Tian Y.M., Wilson M.I., Gielbert J., Gaskell S.J., Kriegsheim A., Hebestreit H.F., Mukherji M., Schofield C.J., Maxwell PH, Pugh CW, Ratcliffe PJ. Targeting of HIF-alpha to the von Hippel-Lindau ubiquitylation complex by O2-regulated prolyl hydroxylation. Science. 2001. 292(5516): 468. DOI:
  35. Bruick R.K., McKnight S.L. A conserved family of prolyl-4-hydroxylases that modify HIF. Science. 2001. 294(5545): 1337. DOI:
  36. Epstein A.C., Gleadle J.M., McNeill L.A., Hewitson K.S., O'Rourke J., Mole D.R., Mukherji M., Metzen E., Wilson M.I., Dhanda A., Tian Y.M., Masson N., Hamilton D.L., Jaakkola P., Barstead R., Hodgkin J., Maxwell P.H., Pugh C.W., Schofield C.J., Ratcliffe P.J. C. elegans EGL-9 and mammalian homologs define a family of dioxygenases that regulate HIF by prolyl hydroxylation. Cell. 2001. 107(1): 43. DOI:
  37. Ivan M., Haberberger T., Gervasi D.C., Michelson K.S., Gunzler V., Kondo K., Yang H., Sorokina I., Conaway R.C., Conaway J.W., Kaelin W.G. Jr. Biochemical purification and pharmacological inhibition of a mammalian prolyl hydroxylase acting on hypoxia-inducible factor. Proc. Natl. Acad. Sci. USA. 2002. 99(21): 13459. DOI:
  38. Mahon P.C., Hirota K., Semenza G.L. FIH-1: a novel protein that interacts with HIF-1alpha and VHL to mediate repression of HIF-1 transcriptional activity. Genes Dev. 2001. 15(20): 2675. DOI:
  39. Lando D., Peet D.J., Whelan D.A., Gorman J.J., Whitelaw M.L. Asparagine hydroxylation of the HIF transactivation domain a hypoxic switch. Science. 2002. 295(5556): 858. DOI:
  40. Ruas J.L., Berchner-Pfannschmidt U., Malik S., Gradin K., Fandrey J., Roeder R.G., Pereira T., Poellinger L. Complex regulation of the transactivation function of hypoxia-inducible factor-1 alpha by direct interaction with two distinct domains of the CREB-binding protein/p300. J. Biol. Chem. 2010. 285(4): 2601. DOI:
  41. Li Z., Wang D., Na X., Schoen S.R., Messing E.M., Wu G. The VHL protein recruits a novel KRAB-A domain protein to repress HIF-1alpha transcriptional activity. EMBO J. 2003. 22(8):1857. DOI:
  42. Schödel J., Oikonomopoulos S., Ragoussis J., Pugh C.W., Ratcliffe P.J., Mole D.R. High-resolution genome-wide mapping of HIF-binding sites by ChIP-seq. Blood. 2011. 117(23): e207. DOI:
  43. Chavez J.C., Baranova O., Lin J., Pichiule P. The transcriptional activator hypoxia inducible factor 2 (HIF-2/EPAS-1) regulates the oxygen-dependent expression of erythropoietin in cortical astrocytes. J. Neurosci. 2006. 26(37): 9471. DOI:
  44. Dhillon S. Roxadustat: First Global Approval. Drugs. 2019. 79(5): 563. DOI:
  45. Frost J., Galdeano C., Soares P., Gadd M.S., Grzes K.M., Ellis L., Epemolu O., Shimamura S., Bantscheff M., Grandi P., Read K.D., Cantrell D.A., Rocha S., Ciulli A. Potent and selective chemical probe of hypoxic signalling downstream of HIF-α hydroxylation via VHL inhibition. Nat. Commun. 2016. 7: 13312. DOI:
  46. Zhang H., Qian D.Z., Tan Y.S., Lee K., Gao P., Ren Y.R., Rey S., Hammers H., Chang D., Pili R., Dang C.V., Liu J.O., Semenza G.L. Digoxin and other cardiac glycosides inhibit HIF-1alpha synthesis and block tumor growth. Proc. Natl. Acad. Sci. USA. 2008. 105(50): 19579. DOI:
  47. Lopez-Lazaro M. Digoxin, HIF-1, and cancer. Proc. Natl. Acad. Sci. USA. 2009. 106(9): E26. DOI:
  48. Marshall D.J., Harried S.S., Murphy J.L., Hall C.A., Shekhani M.S., Pain C., Lyons C.A., Chillemi A., Malavasi F., Pearce H.L., Thorson J.S., Prudent J.R. Extracellular Antibody Drug Conjugates Exploiting the Proximity of Two Proteins. Mol. Ther. 2016. 24(10): 1760. DOI:
  49. Scheepstra M., Hekking K.F.W., van Hijfte L., Folmer R.H.A. Bivalent Ligands for Protein Degradation in Drug Discovery. Comput. Struct. Biotechnol. J. 2019. 17: 160. DOI:
  50. Neklesa T., Snyder L.B., Willard R.R., Vitale N., Pizzano J., Gordon D.A., Bookbinder M., Macaluso J., Dong H., Ferraro C., Wang G., Wang J., Crews C.M., Houston J., Crew A.P., Taylor I. ARV-110: An oral androgen receptor PROTAC degrader for prostate cancer. Journal of Clinical Oncology. 2019. 37(7): 259. DOI:
  51. Maniaci C., Hughes S.J., Testa A., Chen W., Lamont D.J., Rocha S., Alessi D.R., Romeo R., Ciulli A. Homo-PROTACs: bivalent small-molecule dimerizers of the VHL E3 ubiquitin ligase to induce self-degradation. Nat. Commun. 2017. 8(1): 830. DOI:
  52. Zengerle M., Chan K.-H., Ciulli A. Selective small molecule induced degradation of the BET bromodomain protein BRD4. ACS Chem. Biol. 2015. 10(8): 1770. DOI:
  53. da Motta L.L., Ledaki I., Purshouse K., Haider S., De Bastiani M.A., Baban D., Morotti M., Steers G., Wigfield S., Bridges E., Li J.L., Knapp S., Ebner D., Klamt F., Harris A.L., McIntyre A. The BET inhibitor JQ1 selectively impairs tumour response to hypoxia and downregulates CA9 and angiogenesis in triple negative breast cancer. Oncogene. 2017. 36(1): 122. DOI:
  54. Pettersson M., Crews C.M. PROteolysis TArgeting Chimeras (PROTACs) - Past, present and future. Drug Discov. Today Technol. 2019. 31: 15. DOI:
  55. Bayer, Arvinas Partner on PROTAC Joint Venture, Treatments for Cancer, CV, Gynecological Diseases.
  56. Dawson M.A. The cancer epigenome: concepts, challenges, and therapeutic opportunities. Science. 2017. 355(6330): 1147. DOI:
  57. Choudhry H., Harris A.L., McIntyre A. The tumour hypoxia induced non-coding transcriptome. Mol. Aspects Med. 2016. 47-48: 35. DOI:
  58. Choudhry H., Harris A.L. Advances in Hypoxia-Inducible Factor Biology. Cell Metab. 2018. 27(2): 281. DOI:
  59. Zhao H., Yang L., Baddour J., Achreja A., Bernard V., Moss T., Marini J.C., Tudawe T., Seviour E.G., San Lucas F.A., Alvarez H., Gupta S., Maiti S.N., Cooper L., Peehl D., Ram P.T., Maitra A., Nagrath D. Tumor microenvironment derived exosomes pleiotropically modulate cancer cell metabolism. eLife. 2016. 5: e10250. DOI:
  60. Rong L., Li R., Li S., Luo R. Immunosuppression of breast cancer cells mediated by transforming growth factor-β in exosomes from cancer cells. Oncol. Lett. 2016. 11(1): 500. DOI:
  61. Berchem G., Noman M.Z., Bosseler M., Paggetti J., Baconnais S., Le Cam E., Nanbakhsh A., Moussay E., Mami-Chouaib F., Janji B., Chouaib S. Hypoxic tumor-derived microvesicles negatively regulate NK cell function by a mechanism involving TGF-β and miR23a transfer. OncoImmunology. 2015. 5(4): e1062968. DOI:
  62. Fu L., Kettner N.M. The circadian clock in cancer development and therapy. Prog. Mol. Biol. Transl. Sci. 2013. 119: 221. DOI:
  63. Chilov D., Hofer T., Bauer C., Wenger R.H., Gassmann M. Hypoxia affects expression of circadian genes PER1 and CLOCK in mouse brain. FASEB J. 2001. 15(14): 2613. DOI:
  64. Ghorbel M.T., Coulson J.M., Murphy D. Cross-talk between hypoxic and circadian pathways: cooperative roles for hypoxia-inducible factor 1alpha and CLOCK in transcriptional activation of the vasopressin gene. Mol. Cell. Neurosci. 2003. 22(3): 396. DOI:
  65. Yu C., Yang S.L., Fang X., Jiang J.X., Sun C.Y., Huang T. Hypoxia disrupts the expression levels of circadian rhythm genes in hepatocellular carcinoma. Mol. Med. Rep. 2015. 11(5): 4002. DOI:
  66. Koyanagi S., Kuramoto Y., Nakagawa H., Aramaki H., Ohdo S., Soeda S., Shimeno H. A molecular mechanism regulating circadian expression of vascular endothelial growth factor in tumor cells. Cancer Res. 2003. 63(21): 7277.
  67. Wu Y., Tang D., Liu N., Xiong W., Huang H., Li Y., Ma Z., Zhao H., Chen P., Qi X., Zhang E.E. Reciprocal regulation between the circadian clock and hypoxia signaling at the genome level in mammals. Cell Metab. 2017. 25(1): 73. DOI:
  68. Merck to Acquire Peloton Therapeutics, Bolstering Oncology Pipeline.