Visn. Nac. Akad. Nauk Ukr. 2021.(3):50-58
https://doi.org/10.15407/visn2021.03.050

Mykhailo V. Savenets
ORCID: https://orcid.org/0000-0001-9429-6209
Ukrainian Hydrometeorological Institute of State Emergency Service of Ukraine and National Academy of Sciences of Ukraine Kyiv, Ukraine

Volodymyr I. Osadchyi
ORCID: https://orcid.org/0000-0002-0428-4827
Ukrainian Hydrometeorological Institute of State Emergency Service of Ukraine and National Academy of Sciences of Ukraine Kyiv, Ukraine

Andrii V. Oreshchenko
ORCID: https://orcid.org/0000-0002-8363-6885
Ukrainian Hydrometeorological Institute of State Emergency Service of Ukraine and National Academy of Sciences of Ukraine Kyiv, Ukraine

ATMOSPHERIC AIR QUALITY MONITORING OVER THE TERRITORY OF UKRAINE WITH SPECIFICATION OVER THE CITIES USING SENTINEL-5P SATELLITE DATA

The study describes methods for operative monitoring of atmospheric air quality over the territory of Ukraine using the Sentinel-5P satellite data. The methods provide possibility for data specification over the cities. The data processing is fully automatic and deals with the column data of nitrogen dioxide (NO2), carbon monoxide (CO), formaldehyde (HCHO), sulfur dioxide (SO2) and total ozone (O3). The system works every day and starts processing approximately 3 hours after the scanning of Ukrainian territory. The paper describes the procedure of files creation which represents the third level of data archiving. There are implemented the procedures of the adjusting to regular grids and the filtering of statistically unreliable data. The methods for data specification are developed which allow to analyze the content of chemical compounds over the cities. The paper discusses the main features for the interpretation of chemicals’ spatio-temporal distribution. It is emphasized the typical reasons for false interpretation and mistaken conclusions about atmospheric air quality while analyzing the satellite observations.
Keywords: chemical compounds, atmospheric air quality, monitoring, Sentinel-5P, satellite observations.

 Full text (PDF)

  1. Tropospheric Monitoring Instrument. http://www.tropomi.eu
  2. Verhoelst T., Compernolle S., Granville J., Keppens A., Pinardi G., Lambert J.-C., Eichmann K.-U., Eskes H., Niemeijer S., Fjæraa A.M., Pazmoni A., Goutail F., Pommereau J.-P., Cede A., Tiefengraber M. Quality assessment of two years of Sentinel-5p TROPOMI NO2 data. EGU General Assembly 2020. EGU2020-15036. https://ui.adsabs.harvard.edu/abs/2020EGUGA..2215036V/abstract
  3. Abida R., Attié J.-L., El Amraoui L., Ricaud P., Lahoz W., Eskes H., Segers A., Curier L., de Haan J., Kujanpää J., Nijhuis A.O., Tamminen J., Timmermans R., Veefkind P. Impact of spaceborne carbon monoxide observations from the S-5P platform on tropospheric composition analyses and forecasts. Atmospheric Chemistry and Physics. 2017. 17(2): 1081–1103. DOI; https://doi.org/10.5194/acp-17-1081-2017
  4. Zeng J., Gerasimov I., Adams J., Huwe P., Wei J., Meyer D. Exploration of Atmospheric Compositions by TROPOMI on Sentinel-5P. EGU General Assembly 2020. EGU2020-4330. https://ui.adsabs.harvard.edu/abs/2020EGUGA..22.4330Z/abstract
  5. Zeng J., Vollmer B., Ostrenga D., Gerasimov I. Air Quality Satellite Monitoring by TROPOMI on Sentinel-5P. AGU 2018 Fall Meeting. A33J-3280. DOI: https://doi.org/10.1002/essoar.10500849.1
  6. Borsdorff T., Garcia Reynoso A., Stremme W., aan de Brugh J., Grutter M., Landgraf J. Monitoring CO emissions from urban districts in Mexico City using about 2 years of TROPOMI CO observations. EGU General Assembly 2020. EGU2020-5594. https://ui.adsabs.harvard.edu/abs/2020EGUGA..22.5594B/abstract
  7. Kaplan G., Yi̇gi̇t Avdan Z. Space-borne Air Pollution Observation from Sentinel-5P TROPOMI: Relationship between Pollutants, Geographical and Demographic Data. International Journal of Engineering and Geosciences. 2020. 5(3): 130–137. DOI: https://doi.org/10.26833/ijeg.644089
  8. Omrani H., Omrani B., Parmentier B., Helbich M. Spatio-temporal data on the air pollutant nitrogen dioxide derived from Sentinel satellite for France. Data In Brief. 2020. 28: 105089. DOI: https://doi.org/10.1016/j.dib.2019.105089
  9. Petry L., Herold H., Meinel G., Meiers T., Müller I., Kalusche E., Erbertseder T., Taubenböck H., Zaunseder E., Srinivasan V., Osman A., Weber B., Jäger S., Mayer C., Gengenbach C. Air Quality Monitoring and Data Management in Germany – Status Quo and Suggestions for Improvement. Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci. 2020. XLIV-4/W2-2020: 37–43. DOI: https://doi.org/10.5194/isprs-archives-XLIV-4-W2-2020-37-2020
  10. Safarianzengir V., Sobhani B., Yazdani M.H., Kianian M. Monitoring, analysis and spatial and temporal zoning of air pollution (carbon monoxide) using Sentinel-5 satellite data for health management in Iran, located in the Middle East. Air Quality, Atmosphere & Health. 2020. 13: 709–719. DOI: https://doi.org/10.1007/s11869-020-00827-5
  11. The use of Sentinel-5P air quality data by CAMS. ECMWF. https://www.ecmwf.int/sites/default/files/elibrary/2019/19028-use-sentinel-5p-air-quality-data-cams.pdf
  12. Buchwitz M., Schneising O., Noel S., Reuter M., Vanselow S., Bovensmann H., Burrows J.P. Sentinel-5 Precursor methane and carbon monoxide column retrievals and assessments related to localized emission sources. EGU General Assembly 2020. EGU2020-7861. https://ui.adsabs.harvard.edu/abs/2020EGUGA..22.7861B/abstract
  13. Savenets M., Dvoretska I., Nadtochii L. Current state of atmospheric air pollution in Ukraine based on Sentinel-5P satellite data. Visnyk of V.N. Karazin Kharkiv National University, Ser. Geology. Geography. Ecology. 2019. 51: 221–223. DOI: https://doi.org/10.26565/2410-7360-2019-51-16
  14. Savenets M., Osadchyi V., Oreshchenko A., Pysarenko L. Air quality changes in Ukraine during the April 2020 wildfire event. Geographica Pannonica. 2020. 24(4): 271. DOI: https://doi.org/10.5937/gp24-27436
  15. Sentinel-5P. Data Products. https://sentinels.copernicus.eu/web/sentinel/missions/sentinel-5p/data-products
  16. Sentinel-5P. Products and Algorithms. https://sentinels.copernicus.eu/web/sentinel/technical-guides/sentinel-5p/products-algorithms
  17. Miyazaki K., Eskes H., Sudo K., Boersma K.F., Bowman K., Kanaya Y. Decadal changes in global surface NOx emissions from multi-constituent satellite data assimilation. Atmospheric Chemistry and Physics. 2017. 17(2): 807–837. DOI: https://doi.org/10.5194/acp-17-807-2017
  18. Silva S., Arellano A. Characterizing Regional-Scale Combustion Using Satellite Retrievals of CO, NO2 and CO2. Remote Sensing. 2017. 9(7): 744. DOI: https://doi.org/10.3390/rs9070744
  19. Lama S., Houweling S., Boersma K.F., Eskes, H., Aben I., van der Gon H.D., Krol M.C., Dolman H., Borsdorff T., Lorente A. Quantifying burning efficiency in megacities using the NO2∕CO ratio from the Tropospheric Monitoring Instrument (TROPOMI). Atmospheric Chemistry and Physics. 2020. 20(17): 10295–10310. DOI: https://doi.org/10.5194/acp-20-10295-2020
  20. S5P Mission Performance Centre Nitrogen Dioxide Readme. https://sentinel.esa.int/documents/247904/3541451/Sentinel-5P-Nitrogen-Dioxide-Level-2-Product-Readme-File