Visn. Nac. Akad. Nauk Ukr. 2021.(3):59-66
https://doi.org/10.15407/visn2021.03.059

Oleksandr О. Letychevskyi
ORCID: https://orcid.org/0000-0003-0856-9771
Glushkov Institute of cybernetics of the National Academy of Sciences of Ukraine, Kyiv, Ukraine

ALGEBRAIC MODELING AND ITS APPLICATION

The article is devoted to the scientific development of the Glushkov Institute of Cybernetics of the National Academy of Sciences of Ukraine on the application of algebraic and insertional modeling technologies created on the basis of behavioral algebra. Technologies of formalization, algebraic verification, and testing of software and hardware specifications within the model-driven development method are considered. The use of algebraic modeling in biological research, development of systems based on blockchain platforms, analysis of legal and economic models is covered. One of the main areas of application of these technologies is the field of cybersecurity, which uses the method of algebraic matching and formalization of patterns of vulnerabilities and cyberattacks.
Keywords: algebraic modeling, code vulnerabilities, model-driven development, insertion modeling, formal verification, model-based testing, hybrid intelligent systems.

Full text (PDF)

REFERENCES

  1. Letichevsky A., Lyaletski A., Morokhovets M. Glushkov’s evidence algorithm. Cybernetics and Systems Analysis. 2013. 49(4): 489–500. DOI: https://doi.org/10.1007/s10559-013-9534-z
  2. Kapitonova J., Letichevsky A. Algebraic Programming in the APS System. In: ISSAC '90: Proceedings of the international symposium on symbolic and algebraic computation (20-25 August, 1990, Tokyo, Japan). P. 68–75. DOI: https://doi.org/10.1145/96877.96896
  3. Letichevsky A., Letychevskyi O., Peschanenko V. Insertion Modeling and Its Applications. Computer Science Journal of Moldova. 2016. 24(3): 357–370. http://www.apsystems.org.ua/uploads/doc/aps/APSv3.eng.pdf
  4. Letichevsky A., Kolchin A., Letychevskyi O., Potiyenko S., Volkov V., Weigert T. Formal Requirements Capturing using VRS system. In: Voronkov A., Kovács L., Bjorner N. (eds). WING 2010. Workshop on Invariant Generation 2010 (21 July, 2010, Edinburgh, UK). Vol. 1. P. 148–149. DOI: https://doi.org/10.29007/q6mc
  5. Letichevsky A., Gilbert D. A Model for Interaction of Agents and Environments. In: Bert D., Choppy C., Mosses P.D. (eds). Recent Trends in Algebraic Development Techniques. WADT 1999. Lecture Notes in Computer Science. Vol. 1827. Berlin, Heidelberg: Springer, 2000. P. 311–328. DOI:  https://doi.org/10.1007/978-3-540-44616-3_18
  6. Booch G., Rumbaugh J., Jacobson I. Unified modeling language user guide. Addison-Wesley, 2005.
  7. Burger E. Flexible views for view-based model-driven development. KIT Scientific Publishing, 2014.
  8. Silver B. BPMN method and style. Cody–Cassidy Press, 2011.
  9. Letychevskyi O., Odarushchenko O., Peschanenko V., Kharchenko V., Volkov V. Modeling Method for Development of Digital System Algorithms Based on Programmable Logic Devices. Cybernetics and Systems Analysis. 2020. 56: 710–717. DOI: https://doi.org/10.1007/s10559-020-00289-8
  10. Coelho D. The VHDL handbook. Springer Science & Business Media, 1989.
  11. Sutherland S., Davidmann S., Flake P. SystemVerilog for Design. Springer Science & Business Media, 2006.
  12. Fraze D. Cyber Grand Challenge (CGC) (Archived). DARPA. https://www.darpa.mil/program/cyber-grand-challenge
  13. Letychevskyi O. Two-Level Algebraic Method for Detection of Vulnerabilities in Binary Code. In: Proc. of 10th IEEE International Conference on Intelligent Data Acquisition and Advanced Computing Systems (18-21 September, 2019, Metz, France). DOI: https://doi.org/10.1109/IDAACS.2019.8924255
  14. Robere R., Kolokolova A., Ganesh V. The Proof Complexity of SMT Solvers. In: Chockler H., Weissenbacher G. (eds). Computer Aided Verification. CAV 2018. Lecture Notes in Computer Science. Vol. 10982. Springer, Cham, 2018. DOI: https://doi.org/10.1007/978-3-319-96142-2_18
  15. Letychevskyi O., Polhul T. Detection of Fraudulent Behavior Using the Combined Algebraic and Machine Learning Approach. In: Proc. of IEEE International Conference on Big Data (9-12 December, 2019, Los Angeles, USA). DOI: https://doi.org/10.1109/BigData47090.2019.9006546
  16. Letichevsky A. Algebraic Interaction Theory and Cyber-Physical Systems. Journal of Automation and Information Sciences. 2017. 49(9): 1–19. DOI: https://doi.org/10.1615/JAutomatInfScien.v49.i9.10
  17. Henzinger T.A. The theory of hybrid automata. In: Inan M.K., Kurshan R.P. (eds). Verification of Digital and Hybrid Systems. NATO ASI Series (Series F: Computer and Systems Sciences). Vol. 170. Springer, Berlin, Heidelberg. DOI: https://doi.org/10.1007/978-3-642-59615-5_13 
  18. Alharby M., Moorsel A. Blockchain Based Smart Contracts. A Systematic Mapping Study. In: Proc. of International Conference on Cloud Computing, Big Data and Blockchain (15-17 November, 2018, Fuzhou, China). DOI: https://doi.org/10.5121/csit.2017.71011
  19. Letychevskyi O., Peschanenko V., Radchenko V., Orlovskyi M., Sobol A. Algebraic approach to verification and testing of distributed applications. In: Proc. of Blockchain and Internet of Things Conference (7-9 July, 2019, Okinawa, Japan). DOI: https://doi.org/10.1145/3343147.3343159
  20. Letychevskyi O., Peschanenko V., Radchenko V., Poltoratzkyi M., Mogylko S., Kovalenko P. Formal Verification of Token Economy Models. In: Proc. of International Conference on Blockchain and Cryptocurrency (14-17 May, 2019, Seoul, South Korea). DOI: https://doi.org/10.1109/BLOC.2019.8751318
  21. Letichevsky A., Letychevskyi O., Peschanenko V., Poltoratzky M. An Algebraic Approach for Analyzing of Legal Requirements. In: Proc. of International Requirements Engineering Conference Workshops (REW). (4-8 Septеmber, 2017, Lisbon). DOI: https://doi.org/10.1109/REW.2017.51
  22. «Zasudzhenyi» PDV abo Pretsedent na koryst platnyka podatku. Konsultant bukhhaltera. No. 16 (400). 16.04.2007. http://cons.parus.ua/_d.asp?r=03WMGd7e3c4816c93692e4d5ba8e0b8234dec