http://doi.org/10.15407/visn2014.02.032
Visn. Nac. Akad. Nauk Ukr. 2014. (2): 32—39

М.A. Belogolovskii
Galkin Donetsk Institute for Physics and Engineering of National Academy of Sciences of Ukraine, Donetsk

MEMRISTOR, A NEW NANO-SCALED ELEMENT OF THE ELECTRONIC CIRCUITRY

Abstract:
In 2008, the creation of memristor, the fourth component of basic electronic circuits with the ability to accumulate information about the charge that has passed through it, was announced. In this review, the history of the discovery, its significance for further development of micro- and nanoelectronics, fundamental aspects of the problem, as well as the contribution of Ukrainian researchers to their solution are highlighted. Advantages of the memristor in comparison with existing elements of electronic circuitry and prospects for its practical application are discussed.
Keywords: microelectronics, resistive switchings, electromigration, oxygen vacancies, computer memory, neural networks.

Language of article: ukrainian.

References:

  1. Chua L. Memristor – the missing circuit element. IEEE Transactions on Circuit Theory. 1971. CT-18(5): 507–19. http://doi.org/10.1109/TCT.1971.1083337
  2. Strukov D.B., Snider G.S., Stewart D.R., Williams R.S. The missing memristor found. Nature. 2008. 453: 80–83. http://doi.org/10.1038/nature06932
  3. Argall F. Switching phenomena in titanium oxide thin films. Solid-State Electronics. 1968. 11(5): 535–41. http://doi.org/10.1016/0038-1101(68)90092-0
  4. Valiyev K.A., Goldshteyn R.V., Zhitnikov Yu.V. Mikroelektronika. 2010. 39(3): 163–76.
  5. Kalinin S.V., Spaldin N.A. Functional ion defects in transition metal oxides. Science. 2013. 341(6148): 858–59. http://doi.org/10.1126/science.1243098
  6. Sawa A. Resistive switching in transition metal oxides. Mater. Today. 2008. 11(6): 28–36. http://doi.org/10.1016/S1369-7021(08)70119-6
  7. Park G.-S., Kim Y.B., Park S.Y.. Li X.S., Heo S., Lee M.-J., Chang M.; Kwon J.H. Kim M., Chung U.-I., Dittmann R., Waser R., Kim K. In situ observation of filamentary conducting channels in an asymmetric Ta2O5-x/TaO2-x bilayer structure. Nat. Commun. 2013. 4: 2382.
  8. Tulina N.A. Colossal electroresistance and electron instability in strongly correlated electron systems. Physics-Uspekhi (Advances in Physical Sciences). 2007. 50(11): 1171-78. http://doi.org/10.1070/PU2007v050n11ABEH006396
  9. Rybaltchenko L.F., Fisun V.V., Bobrov N.L. Low Temp. Phys. 1991. 17(2): 202.
  10. Rybaltchenko L.F., Bobrov N.L., Fisun V.V. Reversible transitions in high-Tc cuprates based point contacts. EPJ B. 1999. 10(3): 475–80. http://doi.org/10.1007/s100510050876
  11. Belogolovskii M.A., Revenko Yu.F., Gerasimenko A.Yu., Svistunov V.M., Hatta E., Plitnik G., Shaternik V.E., Rudenko E.M. Inelastic electron tunneling across magnetically active interfaces in cuprate and manganite heterostructures modified by electromigration processes. Low Temp. Phys. 2002. 28(6): 391. http://doi.org/10.1063/1.1491178
  12. Plecenik A., Tomášek M., Plecenik T., Truchly M., Noskovic J., Zahoran M., Roch T., Belogolovskii M., Spankova M., Chromik S., Kus . P. Studies of resistance switching effects in metal/YBa2Cu3O7−x interface junctions. Appl. Surf. Sci. 2010. 256(18): 5684–87. http://doi.org/10.1016/j.apsusc.2010.03.018
  13. Plecenik T., Tomášek M., Belogolovskii M., Truchly M., Gregor M., Noskovicˇ J., Zahoran M., Roch T., Boylo I., Spanková M., Chromik S., Kus, P., Plecenik A. Effect of crystallographic anisotropy on the resistance switching phenomenon in perovskites. J. Appl. Phys. 2012. 111(5):  056106. http://doi.org/10.1063/1.3691598
  14. Belogolovskii M.A., Larkin S.Yu. Nanoelectronic devices with memory-effect of electromigration of oxygen vacancies in complex oxides of transition metals. Elektronika ta zvyazok (Electronics and Communications). 2013. (2): 9–15.
  15. Jin K., Bach P., Zhang X.H., Grupel U., Zohar E., Diamant I., Dagan Y., Smadici S., Abbamonte P., Greene R. Anomalous enhancement of the superconducting transition temperature of electron-doped La2-xCexCuO4 and Pr2-xCexCuO4 cuprate heterostructures. Phys. Rev. B. 2011. 83(6): 060511. http://doi.org/10.1103/PhysRevB.83.060511
  16. Pershin Y.V., Di Ventra M. Memory effects in complex materials and nanoscale systems. Adv. Phys. 2011. 60(2): 145–227. http://doi.org/10.1080/00018732.2010.544961
  17. Stoliar P., Levy P., Sánchez M.J., Leyva A G., Albornoz C.A., Gomez-Marlasca F., Zanini A., Toro Salazar C., Ghenzi N., Rozenberg M.J. Non-volatile multilevel resistive switching memory cell: A transition metal oxide-based circuit. IEEE Trans. Circuits Syst. 2013. 61(1): 21-25.
  18. Pershin Y.V., Di Ventra M. Neuromorphic, digital and quantum computation with memory circuit elements. Proc. IEEE. 2012. 100(6): 2071–80. http://doi.org/10.1109/JPROC.2011.2166369