http://doi.org/10.15407/visn2014.01.080
Visn. Nac. Akad. Nauk Ukr. 2014. (1): 80—88

S.I. Romanyuk, S.V. Komisarenko
Palladin Institute of Biochemistry of the National Academy of Sciences of Ukraine, Kyiv

HOW THE CELL IS TRANSPORTING THE SYNTHESIZED SUBSTANCES OR IS IT TRUE
THAT TIME AND DESTINATION OF «INTRACELLULAR LOAD» CANNOT BE CHANGED

Abstract:
The Nobel Prize in Physiology and Medicine 2013 was awarded to James E. Rothman, Randy W. Schekman, and Thomas C. Südhof with Nobel Committee motivation: “for their discoveries of machinery regulating vesicle traffic, a major transport system in our cells”.

Keywordsvesicle traffic, Nobel Prize, J. Rothman, R. Schekman, T. Südhof.

 

Language of article: ukrainian.

References:

  1. Press Release Nobel Committee. http://www.nobelprize.org/nobel_prizes/medicine/laureates/2013/press.html.
  2. Novick P., Field C., Schekman R. Identification of 23 complementation groups required for post-translational events in the yeast secretory pathway. Cell. 1980. 21(1): 205–15. http://doi.org/10.1016/0092-8674(80)90128-2
  3. Block M.R., Glick B.S., Wilcox C.A. et al. Purification of an N-ethylmaleimide-sensitive protein catalyzing vesicular transport. PNAS. 1988. 85(21): 7852–56.http://doi.org/10.1073/pnas.85.21.7852
  4. Weidman P.J., Melançon P., Block M.R., Rothman J.E. Binding of an N-ethylmaleimide-sensitive fusion protein to Golgi membranes requires both a soluble protein(s) and an integral membrane receptor. J. Cell. Biol. 1989. 108(5): 1589–96. http://doi.org/10.1083/jcb.108.5.1589
  5. Oyler G.A., Higgins G.A., Hart R.A., Battenberg E., Billingsley M., Bloom F.E., Wilson M.C. The identification of a novel synaptosomal-associated protein, SNAP-25, differentially expressed by neuronal subpopulations. J. Cell. Biol. 1989. 109(6): 3039–52. http://doi.org/10.1083/jcb.109.6.3039
  6. Inoue A., Obata K., Akagawa K. Cloning and sequence analysis of cDNA for a neuronal cell membrane antigen, HPC-1 (syntaxin 1). J. Biol. Chem. 1992. 267(15): 10613–19.
  7. Trimble W.S., Cowan D.M., Scheller R.H. VAMP-1: a synaptic vesicle-associated integral membrane protein. PNAS. 1988. 85(12): 4538–42. http://doi.org/10.1073/pnas.85.12.4538
  8. Söllner T., Whiteheart S.W., Brunner M., Erdjument-Bromage H., Geromanos S., Tempst P., Rothman J.E. SNAP receptors implicated in vesicle targeting and fusion. Nature. 1993. 362(6418): 318–24. http://doi.org/10.1038/362318a0
  9. Gao Y., Zorman S., Gundersen G., Xi Z., Ma L., Sirinakis G., Rothman J.E., Zhang Y. Single reconstituted neuronal SNARE complexes zipper in three distinct stages. Science. 2012. 337(6100): 1340–43. http://doi.org/10.1126/science.1224492
  10. Brose N., Petrenko A.G., Südhof T.C., Jahn R. Synaptotagmin: a calcium sensor on the synaptic vesicle surface. Science. 1992. 256(5059): 1021–25. http://doi.org/10.1126/science.1589771
  11. Hata Y., Slaughter C.A., Südhof T.C. Synaptic vesicle fusion complex contains unc-18 homologue bound to syntaxin. Nature. 1993. 366(6453): 347–51. http://doi.org/10.1038/366347a0
  12. McMahon H.T., Missler M., Li C., Südhof T.C. Complexins: cytosolic proteins that regulate SNAP receptor function. Cell. 1995. 83(1): 111–19. http://doi.org/10.1016/0092-8674(95)90239-2
  13. Maximov A., Tang J., Yang X., Pang Z.P., Südhof T.C. Complexin controls the force transfer from SNARE complexes to membranes in fusion. Science. 2009. 323(5913): 516–21. http://doi.org/10.1126/science.1166505
  14. Wang Y., Okamoto M., Schmitz F., Hofmann K., Südhof T.C. Rim is a putative Rab3 effector in regulating synaptic-vesicle fusion. Nature. 1997. 388(6642): 593–98. http://doi.org/10.1038/41580
  15. Zhou P., Bacaj T., Yang X. et al. Lipid-Anchored SNAREs Lacking Transmembrane Regions Fully Support Membrane Fusion during Neurotransmitter Release. Neuron. 2013. 80(2): 470–83. http://doi.org/10.1016/j.neuron.2013.09.010
  16. Südhof T.C. Neurotransmitter release: the last millisecond in the life of a synaptic vesicle. Neuron. 2013. 80(3): 675–90. http:/doi.org/10.1016/j.neuron.2013.10.022
  17. Zierath J.R., Lendahl U. Machinery regulating vesicle traffic, a major transport system in our cells. http://www.nobelprize.org/nobel_prizes/medicine/laureates/2013/advanced-medicineprize2013.pdf.
  18. Lashuel H.A, Hirling H. Rescuing defective vesicular trafficking protects against alpha-synuclein toxicity in cellular and animal models of Parkinson's disease. ACS Chem. Biol. 2006. 1(7): 420–24. http://doi.org/10.1021/cb600331e
  19. Alter S.P., Lenzi G.M., Bernstein A.I., Miller G.W. Vesicular integrity in Parkinson's disease. Curr. Neurol. Neurosci. Rep. 2013. 13(7): 362. http://doi.org/10.1007/s11910-013-0362-3
  20. Suzuki T., Araki Y., Yamamoto T., Nakaya T. Trafficking of Alzheimer's disease-related membrane proteins and its participation in disease pathogenesis. J. Biochem. 2006. 139(6): 949–55. http://doi.org/10.1093/jb/mvj121
  21. Caviston J.P., Holzbaur E.L. Huntingtin as an essential integrator of intracellular vesicular trafficking // Trends Cell Biol. – 2009. – V. 19, N 4. – P. 147–155.
  22. Krzewski K., Cullinane A.R. Evidence for defective Rab GTPase-dependent cargo traffic in immune disorders. Exp. Cell. Res. 2013. 319(15): 2360–67. http://doi.org/10.1016/j.yexcr.2013.06.012
  23. Ge J., Shao F. Manipulation of host vesicular trafficking and innate immune defence by Legionella Dot/Icm effectors. Cell Microbiol. 2011. 13(12): 1870–80. http://doi.org/10.1111/j.1462-5822.2011.01710.x
  24. Rossetto O., de Bernard M., Pellizzari R., Vitale G., Caccin P., Schiavo G., Montecucco C. Bacterial toxins with intracellular protease activity. Clin. Chim. Acta. 2000. 291(2): 189–99. http://doi.org/10.1016/S0009-8981(99)00228-4
  25. Blasi J., Chapman E.R., Link E., Binz T., Yamasaki S., De Camilli P., Südhof T.C., Niemann H., Jahn R. Botulinum neurotoxin A selectively cleaves the synaptic protein SNAP-25. Nature. 1993. 365(6442): 160–63. http://doi.org/10.1038/365160a0