http://doi.org/10.15407/visn2014.03.031
Visn. Nac. akad. nauk Ukr 2014, (3): 31—41

E.V. Gorbar1, V.P. Gusynin2
1Taras Shevchenko National University of Kyiv, Kyiv
2Bogolyubov Institute for Theoretical Physics of NAS of Ukraine, Kyiv

HIGGS BOSON: ANTICIPATION, SEARCH, AND DISCOVERY

Abstract:
The 2013 Nobel Prize in Physics was awarded jointly to well-known European physicists — Belgian François Englert and British Peter W. Higgs “for the theoretical discovery of a mechanism that contributes to our understanding of the origin of mass of subatomic particles, and which recently was confirmed through the discovery of the predicted fundamental particle, by the ATLAS and CMS experiments at CERN’s Large Hadron Collider”.
Keywords: Nobel Prize, Higgs boson, Large Hadron Collider.

 

Language of article: ukrainian.

References:

  1. Yang C., Mills R. Conservation of isotopic spin and isotopic gauge invariance. Phys. Rev. 1954. 96: 191. http://doi.org/10.1103/PhysRev.96.191
  2. Utiyama R. Invariant theoretical interpretation of interaction. Phys. Rev. 1956. 101: 1597. http://doi.org/10.1103/PhysRev.101.1597
  3. O’Raifeartaigh L. The Dawning of Gauge Theory. (Princeton: Princeton Univ., 1997).
  4. Landau L.D. Journal of Experimental and Theoretical Physics. 1937. 7(19): 627.
  5. Ginzburg V.L., Landau L.D. Journal of Experimental and Theoretical Physics. 1950. 20: 1064.
  6. Sooryakumar R., Klein M.V. Raman scattering by superconducting-gap excitations and their coupling to charge-density waves. Phys. Rev. Lett. 1980. 45: 660. http://doi.org/10.1103/PhysRevLett.45.660
  7. Littlewood P.B., Varma C.M. Gauge-invariant theory of the dynamical interaction of charge density waves and superconductivity. Phys. Rev. Lett. 1981. 47: 811. http://doi.org/10.1103/PhysRevLett.47.811
  8. Nambu Y., Jona-Lasinio G. Dynamical model of elementary particles based on an analogy with superconductivity. I. Phys. Rev. 1961. 122: 345. http://doi.org/10.1103/PhysRev.122.345
  9. Goldstone J. Field theories with superconductor solutions. Nuovo Cimento. 1961. 19: 154. http://doi.org/10.1007/BF02812722
  10. Goldstone J., Salam A., Weinberg S. Broken symmetries. Phys. Rev. 1962. 127: 965. http://doi.org/10.1103/PhysRev.127.965
  11. Volkov D.V., Akulov V.P. Is the neutrino a Goldstone particle? Phys. Lett. 1973. 46B: 109. http://doi.org/10.1016/0370-2693(73)90490-5
  12. Schwinger J. Gauge invariance and mass. Phys. Rev. 1962. 125: 397. http://doi.org/10.1103/PhysRev.125.397
  13. Anderson P. Plasmons, gauge invariance, and mass. Phys. Rev. 1963. 130: 439. http://doi.org/10.1103/PhysRev.130.439
  14. Migdal A.A., Polyakov A.M. Journal of Experimental and Theoretical Physics. 1966. 51: 135.
  15. Englert F., Brout R. Broken symmetry and the mass of gauge vector bosons. Phys. Rev. Lett. 1964. 13: 321. http://doi.org/10.1103/PhysRevLett.13.321
  16. Higgs P.W. Broken symmetries and the masses of gauge particles. Phys. Rev. Lett. 1964. 13: 508. http://doi.org/10.1103/PhysRevLett.13.508
  17. Higgs P.W. Broken symmetries, massless particles and gauge fields. Phys. Lett. 1964. 12: 132. http://doi.org/10.1016/0031-9163(64)91136-9
  18. Higgs P.W. Prehistory of the Higgs boson. C.R. Physique. 2007. 8: 970. http://doi.org/10.1016/j.crhy.2006.12.006
  19. Weinberg S. A model of leptons. Phys. Rev. Lett. 1967. 19: 1264. http://doi.org/10.1103/PhysRevLett.19.1264