Visn. Nac. Akad. Nauk Ukr. 2016. (8) 59-67

V.В. Nebesnyi ¹, А.А. Grodzinskaya 1,2, А.Yu. Gonchar ¹

1 Institute for Evolutionary Ecology of National Academy of Sciences of Ukraine, Kyiv
2 Kholodny Institute of Botany of National Academy of Sciences of Ukraine, Kyiv


A remote sensing spectrophotometric method for express assessment of the state of urban ecosystem was used. The method is based on the measurement of the spectral reflection characteristics of leaves of bioindicator species Tilia cordata Mill. According to the results of measurements the stress index (reverse vegetation index) was calculated as the most informative measure of the degree of suppression of photosynthesis which indirectly determines the level of anthropogenic contamination of the territory. In terms of the stress index grouping of 36 localities of the 10 administrative districts of Kyiv was performed with the use of cluster analysis. A clear trend of stress index values growth on a gradient of increasing intensity of transport flows was defined. This method is recommended for ecological monitoring of environmental quality and rapid assessment of changes in urban ecosystems.
Keywords: spectrophotometric method, Tilia cordata Mill., bioindication, stress index, urban ecosystems.


Language of article: ukrainian


1. Kurgaeva A.V. The use of fluctuating asymmetry to assess the ecological status of urban areas on the example of Ulyanovsk. In: Bioindication in the Ecological Assessment of Soils and Related Habitats: Proc. Int. Conf. (4—6 February 2013, Moscow). P. 117.
2. Nikolayevskiy V.S. Environmental assessment of environmental pollution and status of terrestrial ecosystems by phytoindication methods. (Moscow, 1999).
3. Maydebura I.S. Ph.D (Biol.) Thesis. (Kaliningrad, 2006).
4. Lutsyshyn O.G., Radchenko V.G., Palapa N.V., Yavorovskiy P.P. Macromorphological changes of reaction-answer of vegetable organisms in the street arboreal plantations of the Kyiv megapolis at stressful levels of technogenic pollution. Dopov. Nac. Akad. Nauk Ukr. 2010. (6): 180.
5. Didukh Ya.P. Fundamentals of bioindication. (Kyiv: Naukova Dumka, 2012).
6. Andreeva A.V., Buznikov A.A., Timofeev A.A., Alekseeva-Popova N.V., Belyaeva A.I. Current problems in remote sensing of the Earth from space. 2006. 3(2): 265. 
 7. Artamonov V.I. Plants and purity of the natural environment. (Moscow: Nauka, 1986).
 8. Andreeva A.V., Buznikov A.A., Timofeev A.A., Skryabin S.V. Spectral researches of technical loading on plants of megapolises. Izvestiya SPbGETU LETI. 2006. (1): 31.
 9. Andreeva A.V., Buznikov A.A., Skryabin S.V., Timofeev A.A., Alekseeva-Popova N.V., Belyaeva A.I. Current problems in remote sensing of the Earth from space. 2007. 4(2): 175.

10. Kondratiev K.Ya., Fedchenko P.P. The spectral reflectance and recognition of the vegetation. (Leningrad: Gidrometeoizdat 1982).
11. Levanchuk A.V., Kopytenkova O.I., Nekhoroshev A.S., Gayko I.I. Uspekhi Sovremennogo Yestestvoznaniya. 2005. (9): 59
12. Andreev D.N. The bioindication of environmental conditions on the chlorophyll fluorescence of pine needles. In: Bioindication in the Ecological Assessment of Soils and Related Habitats: Proc. Int. Conf. (4—6 February 2013, Moscow). P. 12.
13. Khavaninzadeh A.R., Veroustraete F., Buytaert J.A.N., Samson R. Leaf injury symptoms of Tilia sp. as an indicator of urban habitat quality. Ecological indicators. 2014. 41: 58.
14. Surin V.G. Agrophysica. 2011. (2): 39.
15. Ward J.H. Hierarchical grouping to optimize an objective function. Journal of American Statistical Association. 1963. 58(301): 236.
16. Falla J., Laval-Gilly P., Henryon M., Morlot D., Ferard J. Biological air quality monitoring: a review. Environ. Monit. Assess. 2000. 64: 627.
17. Conti M.E., Cecchetti G. Biological monitoring: lichens as bioindicators of air pollution assessment — a review. Environ. Pollut. 2001. 114(3): 471.
18. Conti M.E. Biological Monitoring: Theory & Applications: Bioindicators and Biomarkers for Environmental Quality and Human Exposure Assessment. (WIT Press, 2008).
19. Grodzynska G., Syrchin S., Kuchma M., Кonischuk V. Macromycetes — bioindicators of radiocaesium contamination of Ukrainian forest ecosystems. Visn. Nac. Akad. Nauk Ukr. 2008. (9): 26.
20. Grodzinskaya A.A., Syrchin S.A., Kuchma N.D., Wasser S.P. In: Mycobiota Ukrainian Polesye: the Consequences of the Chernobyl Disaster. (Kyiv: Naukova Dumka, 2013).
21. Olenciuc A.O., Sarbu R., Dunca E. Air Quality Monitoring Using Bioindicators in Jiu Valley. In: SGEM-2013 Proс. GeoConf. on Energy and Clean Technologies. (June 16—22, 2013).
22. Cen S. Biological Monitoring of Air Pollutants and Its Influence on Human Beings. Open Biomedical Engineering Journal. 2015. 9: 219.
23. Gonzalez S.M., Casanovas S.S., Pignata M.L. Biomonitoring of air pollutants from traffic and industries employing Ramalina ecklonii (Spreng.) Mey. and Flot. in Cordoba, Argentina. Environ. Pollut. 1996. 91: 269.
24. Kammerbauer J., Dick T. Monitoring of urban traffic emissions using some physiological indicators in Ricinus communis L. Plants. Arch. Environ. Contam. Toxicol. 2000. 39: 161.
25. Klumpp A., Ansel W., Klumpp G., Calatayud V., Garrec J.P., He S., Peñuelas J., Ribas A., Ro-Poulsen H., Rasmussen S., Sanz M., Vergne P. Ozone pollution and ozone bio-monitoring in European cities. Ozone concentrations and cumulative exposure indices at urban and suburban sites. Atmos. Environ. 2006. 40: 7963.
26. Wuytack T., Verheyen K., Wuyts K., Kardel F., Adriaenssens S., Samson R. The potential of biomonitoring of air quality using leaf characteristics of white willow (Salix alba L.). Environ. Monit. Assess. 2010. 171: 197.
27. Khavaninzadeh A.R., Veroustraete F., Wuyts K., Kardel F., Samson R. Dorsi-ventral leaf reflectance properties of Carpinus betulus L.: an indicator of urban habitat quality. Environ. Pollut. 2012. 162: 332.
28. Kardel F., Wuyts K., Khavaninzadeh A.R., Wuytack T., De Smedt S., Babanezhad M., Samson R. Comparison of leaf saturation isothermal remanent magnetisation (SIRM) with anatomical, morphological and physiological tree leaf characteristics for assessing urban habitat quality. Environ. Pollut. 2013. 183: 96.
29. Sifakis N., Soulakellis N.A., Paronis D.K. Quantitative mapping of air pollution density using earth observations: a new processing method and application to an urban area. Int. J. Remote Sensing. 1998. 19: 3289. 
30. Retalis A., Cartalis C., Athanassiou E. Assessment of the distribution of aerosols in the area of Athens with the use of Landsat Thematic Mapper data. Int. J. Remote Sensing. 1999. 20(5): 939.
31. Khavaninzadeh A.R., Veroustraete F., Buytaert J.A.N., Dirckx J., Samson R. Assessing urban habitat quality using spectral characteristics of Tilia leaves. Environ. Pollut. 2013. 178: 7.
32. Nebesnyi V.B., Grodzinskaya A.A. Assessment of technogenic pollution of Kyiv (Ukraine) with spectral reflectal characteristics of Tilia cordata Mill. (Tiliaceae) leaves. Environmental and Socio-economic Studies. 2014. 2(4): 38—42.
33. Nebesnyi V.B., Grodzynska G.A. An assessment of industrial pollution of Kyiv with the spectral reflection of leaves of Tilia cordata (Tiliaceae) leaves. Ukrainian Botanical Journal. 2015. 72(2): 116.
34. Cherepanov A., Druzhinina E. Spectral characteristics of vegetation and vegetation indexes. Geomatics. 2009. (3): 28.
35. Motohka T., Nasahara K.N., Oguma H., Tsuchida S. Applicability of Green-Red Vegetation Index for Remote Sensingof Vegetation Phenology. Remote Sens. 2010. 2: 2369.