Visn. Nac. Akad. Nauk Ukr. 2015. (6): 34-42.
https://doi.org/10.15407/visn2015.06.034

Yu.V. Malyukin, S.L. Yefimova, Т.N. Tkacheva, G.V. Grygorova
Institute for Scintillation Materials of National Academy of Science of Ukraine, Kharkov

ORDERED ADSORPTION OF ORGANIC MOLECULES ON INORGANIC NANOPARTICLES

Abstract:
The modern state and prospects of creation of the novel “nanocarriers” medicine are shown in the article. The results of the authors’ own research on the use of inorganic orthovanadate nanocrystals ReVO4:Eu3+ (Re = Y, Gd, La) with different form-factors as nanoscale carrier of active organic compound are presented. Interaction between nanoparticles ReVO4:Eu3+ and some cationic polymethine dyes has been studied by spectrophotometric method. It was shown that in water solutions there is sorption of dye molecule on the surface of nanoparticles. Depending on the structure of molecule and its tendency to aggregating, increase of local concentration of dyes in a near-surface layer of nanoparticle can reduce to ordered aggregating of dye molecules and formation of complicated complexes «inorganic nanoparticle — dye aggregates». Inorganic nanoparticles play role of unique «templates» for formation of dye aggregates, and the degree of ordering of molecules in an aggregate can be managed by nanoparticles’ form-factor.
Keywords: nanoparticles, dye, adsorption, hybrid organic-inorganic complexes.

 

Language of article: ukrainian.

References:

  1. Brayden D.J. Controlled release technologies for drug delivery. Drug Discovery Today. 2003. 8(21): 976–78. http://doi.org/10.1016/S1359-6446(03)02874-5
  2. Parveen S., Mishra R., Sahoo S.K. Nanoparticles: a boon to drug delivery, therapeutics, diagnostics and imaging. Nanomedicine. 2012. 8(2): 147–66. http://doi.org/10.1016/j.nano.2011.05.016
  3. Hunziker P. Nanomedicine: shaping the future of medicine. Eur. J. Nanomedicine. 2009. 2(1):4. http://doi.org/10.1515/EJNM.2009.2.1.4
  4. Hunziker P. Nanomedicine – the challenge of complexity. Eur. J. Nanomedicine. 2009. 2(2): 3–5. http://doi.org/10.1515/EJNM.2009.2.2.3
  5. Soloviev M. Nanobiotechnology today: focus on nanoparticles medicine. 2007. J. Nanobiotechnol. 5: 11. http://doi.org/10.1186/1477-3155-5-11
  6. Salata O.V. Applications of nanoparticles in biology and medicine. 2004. J. Nanobiotechnol. 2: 3. http://doi.org/10.1186/1477-3155-2-3
  7. Torchilin V.P. Targeted pharmaceutical nanocarriers for cancer therapy and imaging. AAPS J. 2007. 9(2): E128–47. http://doi.org/10.1208/aapsj0902015
  8. Grossman J.H., McNeil S.E. Nanotechnology in cancer medicine. Physics Today. 2012. 65: 38–42. http://doi.org/10.1063/PT.3.1678
  9. Nichols J.W., Bae Y.H. Odyssey of cancer nanoparticles: from injection site to site of action. Nano Today. 2012. 7(6): 606–18. http://doi.org/10.1016/j.nantod.2012.10.010
  10. Bamrungsap S., Zhao Z., Chen T. Wang L., Li C., Fu T., Tan W. Nanotechnology in therapeutics: focus on nanoparticles as drug delivery system. Nanomedicine. 2012. 7(8): 1253–71. http://doi.org/10.2217/nnm.12.87
  11. Freitas A. Nanotechnology, nanomedicine and nanosurgery. Int. J. Surgery. 2005. 3(4): 242–46. http://doi.org/10.1016/j.ijsu.2005.10.007
  12. Liu Y., Niu T.-S., Zhang L., Yang J.-Sh. Review on nano-drugs. Nat. Sci. 2010. 2(1): 41–48. http://doi.org/10.4236/ns.2010.21006
  13. Torchilin V.P. Nanoparticles as Drug Carriers (London, Imperial College Press, 2006).
  14. Petros R., DeSimone J.M. Strategies in design of nanoparticles for therapeutic applications. Nat. Rev. Drug Disc. 2010. 9(8): 615–27. http://doi.org/10.1038/nrd2591
  15. Xie J., Lee S., Chen X. Nanoparticle-based theranostic agents. Adv. Drug. Deliv. Rev. 2010. 62(11): 1064–79. http://doi.org/10.1016/j.addr.2010.07.009
  16. Klochkov V., Kavok N., Grygorova G., Sedyh O., Malyukin Yu. Size and shape influence of luminescent orthovanadate nanoparticles on their accumulation in nuclear compartments of rat hepatocytes. Mater. Sci. Eng. C. 2013. 33(5): 2708–12. http://doi.org/10.1016/j.msec.2013.02.046
  17. Klochkov V.K., Masalov A.A., Kavok N.S., Malyukin Yu.V., Vyagin O.G. Colloidal synthesis and properties of lanthanide orthophosphate nanophosphors. Funct. Mater. 2009. 16(4): 466–69.
  18. Klochkov V.K., Grigorova A.V., Sedyh O.O., Malyukin Yu.V. Characteristics of nLnVO4:Eu3+ (Ln = La, Gd, Y, Sm) sols with nanoparticles of different shapes and sizes. J. Appl. Spectr. 2012. 79(5): 726–30. http://doi.org/10.1007/s10812-012-9662-7
  19. Klochkov V.K., Grigorova A.V., Sedyh O.O., Malyukin Yu.V. The influence of agglomeration of nanoparticles on their superoxide dismutase-mimetic activity. Colloids and Surfaces A. 2012. 409: 176–82. http://doi.org/10.1016/j.colsurfa.2012.06.019
  20. Smiley S.T., Reers M., Mottola-Hartshorn C., Lin M., Chen A., Smith T.W., Steele G.D., Chen L.B. Intracellular heterogeneity in mitochondrial membrane potentials revealed by a J-aggregate-forming lipophilic cation JC-l. Proc. Natl. Acad. Sci. USA. 1991. 88(9): 3671–75. http://doi.org/10.1073/pnas.88.9.3671
  21. Salvioli S., Ardizzoni A., Franceschi C., Cossarizza A. JC-1, but not DiOC6(3) or rhodamine 123, is a reliable fluorescent probe to assess DΨ changes in intact cells: implications for studies on mitochondrial functionality during apoptosis. FEBS Lett. 1997. 411, 77–82. http://doi.org/10.1016/S0014-5793(97)00669-8
  22. Jones R.M., Lu L., Helgeson R., Bergstedt T.S., McBranch D.W.,Whitten D.G. Building highly sensitive dye assemblies for biosensing from molecular building blocks. Proc. Natl. Acad. Sci. USA. 2001. 98(26), 14769–72. http://doi.org/10.1073/pnas.251555298
  23. Legrand O., Perrot J.-Y., Simonin G., Baudard M., Marie J.P. JC-1: a very sensitive fluorescent probe to test Pgp activity in adult acute myeloid leukemia. Blood. 2001. 97(2), 502–08. http://doi.org/10.1182/blood.V97.2.502
  24. Kasha M. Molecular excitons in small aggregates. In: Spectroscopy of the excited state (NY, Premium Press, 1976). http://doi.org/10.1007/978-1-4684-2793-6_12
  25. McRae E.G., Kasha M. Enhancement of phosphorescence ability upon aggregation of dye molecules. J. Chem. Phys. 1958. 28: 721–22. http://doi.org/10.1063/1.1744225
  26. Kasha M., Rawls H.R., El-Bayoumi M.A. The exciton model in molecular spectroscopy. Pure Appl. Chem. 1965. 11: 371–92. http://doi.org/10.1351/pac196511030371
  27. Czikkely V., Forsterling H.D., Kuhn H. Extended dipole model for aggregates of dye molecules.Chem. Phys. Lett. 1970. 6: 207–10. http://doi.org/10.1016/0009-2614(70)80220-2
  28. Hassanzader A., Zeini-Isfahani A., Habibi M.H. Molecular exciton theory calculation based on experimental results for Solophenyl red 3BL azo dye–surfactants interactions. Spectrochimica Acta A. 2006. 64: 464–76. http://doi.org/10.1016/j.saa.2005.07.077
  29. Tatikolov A.S. Polymethine dyes as spectral-fluorescent probes for biomacromolecules. J. Photochem. Photobiol. C. 2012. 13(1): 55–90. http://doi.org/10.1016/j.jphotochemrev.2011.11.001
  30. Guralchuk G.Ya., Sorokin A.V., Katrunov I.K., Yefimova S.L., Lebedenko A.N., Malyukin Y.V., Yarmoluk S.M. Specificity of cyanine dye L-21 aggregation in solutions with nucleic acids. J. Fluorescence. 2007. 17(4): 370–76. http://doi.org/10.1007/s10895-007-0201-5
  31. Sorokin A.V. Control of optical properties of polymethine dye J-aggregates using different additives. J. Appl. Spectr. 2009. 76(2): 234–39. http://doi.org/10.1007/s10812-009-9158-2