Visn. Nac. Akad. Nauk Ukr. 2020. (1): 29-37
https://doi.org/10.15407/visn2020.01.029

A.L. Zuyev
Institute of Applied Mathematics and Mechanics of National Academy of Sciences of Ukraine, Sloviansk
ORCID: http://orcid.org/0000-0002-7610-5621

MATHEMATICAL CONTROL THEORY: NONLINEAR DYNAMICS AND ENGINEERING APPLICATIONS
According to the materials of scientific report at the meeting of the Presidium of NAS of Ukraine, November 6, 2019

One of the most important tasks in mathematical control theory is to stabilize unstable dynamic processes by applying a feedback law. The report introduces a new approach for solving the stabilization problem, which makes it possible to effectively define control strategies for a wide class of essentially nonlinear controlled dynamical systems. The class of systems under investigation includes, in particular, mathematical models in robotics and controlled engineering structures with elastic beams, plates, and shells. The obtained theoretical results are applied to problems of stabilization and navigation of mobile robots in environments with obstacles. Computer simulation results are also presented to illustrate the vibrations of a controlled shell, which is used for experiments with novel lightweight elastic structures in civil engineering. A part of this report is devoted to the application of methods of mathematical control theory to the optimization of processes in chemical engineering in the sense of minimizing the consumption of input reactants (raw materials) or maximizing the productivity. For this purpose, a class of isoperimetric optimal control problems for non-stationary mass and energy balance equations has been solved in order to improve the performance of chemical reactors in comparison to their steady-state operation.
Keywords: mathematical control theory, stabilization of motion, motion planning in robotics, optimization of chemical reactions.

Language of article: ukrainian

  Full text (PDF)

 

REFERENCES

  1. Schrijver A. Flows in railway optimization. Nieuw Archief voor Wiskunde. 2008. 9(2): 126-131.
  2. Haroche S. Nobel Lecture: Controlling photons in a box and exploring the quantum to classical boundary. Reviews of Modern Physics. 2013. 85: 1083-1102. DOI: https://doi.org/10.1103/RevModPhys.85.1083 
  3. Sayrin C., Dotsenko I., Zhou X., Peaudecerf B., Rybarczyk T., Gleyzes S., Rouchon P., Mirrahimi M., Amini H., Brune M., Raimond J.-M., Haroche S. Real-time quantum feedback prepares and stabilizes photon number states. Nature. 2011. 477: 73–77. DOI: https://doi.org/10.1038/nature10376
  4. Pontryagin L.S., Boltyanskii V.G., Gamkrelidze R.V., Mishchenko E.F. The Mathematical Theory of Optimal Processes. (New York London: John Wiley & Sons, 1962).
  5. Lyapunov A.M. The general problem of the stability of motion. International Journal of Control (Lyapunov Centenary Issue). 1992. 55(3): 531-772. DOI: https://doi.org/10.1080/00207179208934253
  6. Bellman R., Kalaba R.E. Dynamic Programming and Modern Control Theory. (New York: Academic Press, 1965).
  7. Krasovskii N.N. Theory of Motion Control. (Moscow: Nauka, 1968).
  8. Kalman R.E., Falb P.L., Arbib M.A. Topics in Mathematical System Theory. (New York: Grav-Hlll Book Company, 1969).
  9. Agrachev A., Sachkov Yu. Control Theory from the Geometric Viewpoint. (Berlin, Heidelberg: Springer-Verlag, 2004). DOI: https://doi.org/10.1007/978-3-662-06404-7
  10. Maxwell J.C. On governors. Proceedings of the Royal Society of London. 1868. 16: 270-283.
  11. Kovalev A.M., Shcherbak V.F. Controllability, Observability, Identifiability of Dynamical Systems. (Kyiv: Naukova Dumka, 1993).
  12. Chikrii A. Conflict-Controlled Processes. (Dordrecht: Springer, 1997). DOI: https://doi.org/10.1007/978-94-017-1135-7
  13. Korobov V.I. Controllability Function Method. (Moscow, Izhevsk: R & C Dynamics, 2007).
  14. Kovalev A.M., Martynyuk A.A., Boichuk O.A., Mazko A.G., Petryshyn R.I., Slyusarchuk V.Yu., Zuyev A.L., Slyn’ko V.I. Novel qualitative methods of nonlinear mechanics and their application to the analysis of multifrequency oscillations, stability, and control problems. Nonlinear Dynamics and Systems Theory. 2009. 9: 117-145.
  15. Bloch A.M. Nonholonomic Mechanics and Control. 2nd ed. (New York: Springer-Verlag, 2015). DOI: https://doi.org/10.1007/978-1-4939-3017-3
  16. Brockett R.W. Asymptotic stability and feedback stabilization. In: Differential Geometric Control Theory. Brockett R.W., Millman R.S., Sussmann H.J. (Eds.). (Boston: Birkhäuser, 1983). P. 181–191.
  17. Coron J.-M. On the stabilization in finite time of locally controllable systems by means of continuous time-varying feedback law. SIAM Journal on Control and Optimization. 1995. 33(3): 804–833. DOI: https://doi.org/10.1137/S0363012992240497
  18. Zuyev A. Exponential stabilization of nonholonomic systems by means of oscillating controls. SIAM Journal on Control and Optimization. 2016. 54(3): 1678–1696. DOI: https://doi.org/10.1137/140999955
  19. Zuyev A., Grushkovskaya V., Benner P. Time-varying stabilization of a class of driftless systems satisfying second-order controllability conditions. In: 2016 European Control Conference (ECC) (29 June — 1 July 2016, Aalborg, Denmark). IEEE, 2016. P. 575–580. DOI: https://doi.org/10.1109/ECC.2016.7810346
  20. Zuyev A., Grushkovskaya V. Motion planning for control-affine systems satisfying low-order controllability conditions. International Journal of Control. 2017. 90(11): 2517–2537. DOI: https://doi.org/10.1080/00207179.2016.1257157
  21. Zuyev A., Grushkovskaya V. Obstacle avoidance problem for driftless nonlinear systems with oscillating controls. IFAC-PapersOnLine. 2017. 50: 10476–10481. DOI: https://doi.org/10.1016/j.ifacol.2017.08.1979
  22. Grushkovskaya V., Zuyev A., Ebenbauer C. On a class of generating vector fields for the extremum seeking problem: Lie bracket approximation and stability properties. Automatica. 2018. 94: 151–160. DOI: https://doi.org/10.1016/j.automatica.2018.04.024
  23. Grushkovskaya V., Durr H.-B., Ebenbauer C., Zuyev A. Extremum seeking for time-varying functions using Lie bracket approximations. IFAC-PapersOnLine. 2017. 50: 5522–5528. DOI: https://doi.org/10.1016/j.ifacol.2017.08.1093
  24. Zuyev A. Application of control Lyapunov functions technique for partial stabilization. In: Proc. 2001 IEEE International Conference on Control Applications (CCA'01). IEEE, 2001. P. 509-513. DOI: https://doi.org/10.1109/CCA.2001.973917
  25. Zuyev A.L., Ignatyev A.O., Kovalev A.M. Stability and Stabilization of Nonlinear Systems. (Kiev: Naukova Dumka, 2013).
  26. Zuyev A. Partial asymptotic stability and stabilization of nonlinear abstract differential equations. In: 42nd IEEE Conference on Decision and Control. (9-12 December 2003, Maui, Hawaii, USA). IEEE, 2003. P. 1321–1326. DOI: https://doi.org/10.1109/CDC.2003.1272792
  27. Zuyev A.L. Partial Stabilization and Control of Distributed Parameter Systems with Elastic Elements. (Cham, Heidelberg, New York: Springer, 2015). DOI: https://doi.org/10.1007/978-3-319-11532-0
  28. Zuyev A., Sawodny O. Stabilization and observability of a rotating Timoshenko beam model. Mathematical Problems in Engineering. 2007. Article ID 57238: 1–19. DOI: https://doi.org/10.1155/2007/57238
  29. Zuyev A., Sawodny O. Modelling and control of a shell structure based on a finite dimensional variational formulation. Mathematical and Computer Modelling of Dynamical Systems. 2015. 21(6): 591–612. DOI: https://doi.org/10.1080/13873954.2015.1065278
  30. Zuyev A., Seidel-Morgenstern A., Benner P. An isoperimetric optimal control problem for a non-isothermal chemical reactor with periodic inputs. Chemical Engineering Science. 2017. 161: 206–214. DOI: https://doi.org/10.1016/j.ces.2016.12.025
  31. Benner P., Seidel-Morgenstern A., Zuyev A. Periodic switching strategies for an isoperimetric control problem with application to nonlinear chemical reactions. Applied Mathematical Modelling. 2019. 69: 287–300. DOI: https://doi.org/10.1016/j.apm.2018.12.005
  32. Felischak M., Nikolic D., Petkovska M., Seidel-Morgenstern A. Forced periodic reactor operation with simultaneous modulation of two inputs: nonlinear frequency response analysis and experimental demonstration. In: 2018 AIChE Annual Meeting Proceedings (28 October – 2 November 2018, Pittsburgh, PA, USA). 2018. P. 467e.