Visn. Nac. Akad. Nauk Ukr. 2020.(8): 29-37

Serhiy V. Komisarenko
Palladin Institute of Biochemistry of the National Academy of Sciences of Ukraine, Kyiv, Ukraine


The article provides a broad and thorough analysis of the current situation regarding the COVID-19 pandemic. The origin and structure of SARS-CoV-2 virus, ways of infection, features of the disease, COVID-19 diagnosis, the use of pharmaceuticals for the disease treatment, the formation of immunity against SARS-CoV-2, vaccines and the effectiveness of anti-epidemic quarantine measures are examined. The use of mathematical modeling of the epidemic process and the prospects of quarantine ending are discussed.
Keywords: COVID-19 pandemic, SARS-CoV-2 coronavirus, ways of infection, COVID-19 diagnosis, anti-viral immunity, vaccines, models of the epidemic process.

Language of article: ukrainian

Full text (PDF)


  1. Reimann H.A. Landmark article Dec 24, 1938: An acute infection of the respiratory tract with atypical pneumonia. A disease entity probably caused by a filtrable virus. JAMA. 1984. 251(7): 936–944. DOI:
  2. Severe acute respiratory syndrome.
  3. Middle East respiratory syndrome.
  4. COVID-19 Dashboard by the Center for Systems Science and Engineering (CSSE) at Johns Hopkins University (JHU).
  5. In Ukraine — the first case of coronavirus. Ukrayinska pravda. March 3, 2020 (in Ukrainian).
  6. Wee S.-L., McNeil D.G.Jr. China Identifies New Virus Causing Pneumonialike Illness.
  7. Lu R., Zhao X., Li J. et al. Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding. Lancet. 2020. 395(10224): 565–574. DOI:
  8. Beaudette F.R., Hudson C.B. Cultivation of the virus of infectious bronchitis. J. Am. Vet. Med. Assoc. 1937. 90: 51–58.
  9. Tyrrell D.A., Bynoe M.l. Cultivation of a novel type of common-cold virus in organ cultures. Br. Med. J. 1965. 1(5448): 1467–1470. DOI:
  10. Woo P.C., Lau S.K., Huang Y., Yuen K.Y. Coronavirus diversity, phylogeny and interspecies jumping. Exp. Biol. Med. (Maywood). 2009. 234(10): 1117–1127. DOI:
  11. Derek Wong’s Virology.
  12. Phylogeny of SARS-like betacoronaviruses including novel coronavirus SARS-CoV-2.
  13. Davidson H. First Covid-19 case happened in November, China government records show — report.
  14. Huang C., Wang Y., Li X. et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 2020. 395(10223): 497–506. DOI:
  15. Osborne H. Coronavirus Outbreak May Have Started As Early As September, Scientists Say.
  16. Zhou P., Yang X.L., Wang X.G. et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature. 2020. 579(7798): 270–273. DOI:
  17. Readfearn G. How did coronavirus start and where did it come from? Was it really Wuhan’s animal market?
  18. Liu P., Jiang J.Z., Wan X.F., Hua Y., Li L., Zhou J., Wang X., Hou F., Chen J., Zou J., Chen J. Are pangolins the intermediate host of the 2019 novel coronavirus (SARS-CoV-2)? PLoS Pathog. 2020. 16(5): e1008421. DOI:
  19. Andersen K.G., Rambaut A., Lipkin W.I., Holmes E.C., Garry R.F. The proximal origin of SARS-CoV-2. Nat. Med. 2020. 26(4): 450–452. DOI:
  20. Shinkman P.D. U.S. Spy Agencies Weigh In on Coronavirus Rumors.
  21. Sanger D.E. Pompeo Ties Coronavirus to China Lab, Despite Spy Agencies’ Uncertainty.
  22. Pennisi E. How bats have outsmarted viruses — including coronaviruses — for 65 million years. Science. Jul. 22, 2020. DOI:
  23. Scudellari M. The sprint to solve coronavirus protein structures — and disarm them with drugs. Nature News. 15 May 2020. DOI:
  24. Zhang L., Lin D., Sun X. et al. Crystal structure of SARS-CoV-2 main protease provides a basis for design of improved α-ketoamide inhibitors. Science. 2020. 368(6489): 409–412. DOI:
  25. Wu F., Zhao S., Yu B., Chen Y.M., Wang W., Song Z.G., Hu Y., Tao Z.W., Tian J.H., Pei Y.Y., Yuan M.L., Zhang Y.L., Dai F.H., Liu Y., Wang Q.M., Zheng J.J., Xu L., Holmes E.C., Zhang Y.Z. A new coronavirus associated with human respiratory disease in China. Nature. 2020. 579(7798): 265–269. DOI:
  26. Schmidt A., Wolff M.H., Weber O. Coronaviruses with special emphasis on first insights concerning SARS. Springer, 2005. 232 p. DOI:
  27. Wrapp D., Wang N., Corbett K.S., Goldsmith J.A., Hsieh C.-L., Abiona O., Graham B.S., McLellan J.S. Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation. Science. 2020. 367(6483): 1260–1263. DOI:
  28. Zhang X., Li Sh., Niu Sh. ACE2 and COVID-19 and the Resulting ARDS. Postgrad. Med. J. 2020. 96(1137): 403–407.
  29. Watanabe Ya., Allen J.D., Wrapp D., McLellan J.S., Crispin M. Site-specific glycan analysis of the SARS-CoV-2 spike. Science. 2020. 369(6501): 330–333. DOI:
  30. Hoffman M. SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor. Cell. 2020. DOI:
  31. Sakai K., Ami Y., Tahara M. et al. The Host Protease TMPRSS2 Plays a Major Role in in Vivo Replication of Emerging H7N9 and Seasonal Influenza. Viruses J. Virol. 2014. 88(10): 5608–5616. DOI:
  32. Vankadari N., Wilce J.A. Emerging WuHan (COVID-19) Coronavirus: Glycan Shield and Structure Prediction of Spike Glycoprotein and Its Interaction With Human CD26. Emerg. Microbes Infect. 2020. 9(1): 601–604. DOI:
  33. Wang K., Chen W., Zhou Y.-S. et al. SARS-CoV-2 invades host cells via a novel route: CD147-spike protein. bioRxiv. DOI:
  34. Castelvetri L.C., Ojha R., Pedro L.D. et al. Neuropilin-1 facilitates SARS-CoV-2 cell entry and provides a possible pathway into the central nervous system. BioRxiv preprint. DOI:
  35. Jia Y., Shen G., Zhang Y., Huang K.-S., Ho H.-Y., Hor W.-S., Yang C.-H., Li C., Wang W.-L. Analysis of the mutation dynamics of SARS-CoV-2 reveals the spread history and emergence of RBD mutant with lower ACE2 binding affinity. BioRxiv. 2020. DOI:
  36. Zhang L., Jackson C.B., Mou H., Ojha A., Rangarajan E.S., Izard T., Farzan M., Choe H. The D614G mutation in the SARS-CoV-2 spike protein reduces S1 shedding and increases infectivity. BioRxiv. June 12, 2020. DOI:
  37. Thao T.T.N., Labroussaa F., Ebert N. et al. Rapid reconstruction of SARS-CoV-2 using a synthetic genomics platform. Nature. 2020. DOI:
  38. Sun J., Zhuang Zh., Zheng J. et al. Generation of a Broadly Useful Model for COVID-19 Pathogenesis, Vaccination, and Treatment. Cell. 2020. 182: 1–10. DOI:
  39. Gaglia M., Lakdawala S. What we do and do not know about COVID-19’s infectious dose and viral load.
  40. Wang W., Xu Y., Gao R., Lu R., Han K., Wu G., Tan W. Detection of SARS-CoV-2 in Different Types of Clinical Specimens. JAMA. 2020. 323(18): 1843–1844. DOI:
  41. Meyerowitz E.A., Richterman A.G., Quick M.P.H. A Summary of the COVID-19 Literature So Far. Medscape. May 18, 2020.
  42. To K.K., Tsang O.T., Chik-Yan Y.C. et al. Consistent detection of 2019 novel coronavirus in saliva. Clinical Infectious Diseases. 2020. DOI:
  43. Sex and Coronavirus Disease 2019 (COVID-19).
  44. Mandavilli A. Infected but Feeling Fine: The Unwitting Coronavirus Spreaders. The New York Times. July 9, 2020.
  45. Petri W. Infected with the coronavirus but not showing symptoms? A physician answers 5 questions about asymptomatic COVID-19. The Conversation.
  46. van Doremalen N., Bushmaker T., Morris D.H., Holbrook M.G., Gamble A., Williamson B.N., Tamin A., Harcourt J.L., Thornburg N.J., Gerber S.I., Lloyd-Smith J.O., de Wit E., Munster V.J. Aerosol and Surface Stability of SARS-CoV-2 as Compared with SARS-CoV-1. N. Engl. J. Med. 2020. 382(16): 1564–1567. DOI:
  47. Sungnak W., Huang N., Becavin C., Berg M., Queen R., Litvinukova M., Talavera-Lopez C., Maatz H., Reichart D., Sampaziotis F., Worlock K.B., Yoshida M., Barnes J.L., Lung H.C.A. SARS-CoV-2 entry factors are highly expressed in nasal epithelial cells together with innate immune genes. Nat. Med. 2020. 26: 681–687. DOI:
  48. All Your Coronavirus Questions, Answered. Time. May 8, 2020.
  49. Lewis D. Is the coronavirus airborne? Experts can’t agree. Nature News. April 2, 2020.
  50. Harrison L. Speech May Spread More COVID-19 Than Feces. Medscape. 19 May 2020.
  51. Coronavirus: WHO rethinking how Covid-19 spreads in air. BBC News. 8 July 2020.
  52. Rapid Expert Consultation on SARS-CoV-2 Survival in Relation to Temperature and Humidity and Potential for Seasonality for the COVID-19 Pandemic (April 7, 2020).
  53. Recommendation Regarding the Use of Cloth Face Coverings, Especially in Areas of Significant Community-Based Transmission.
  54. Advice on the use of masks in the context of COVID-19.
  55. Estimating the number of infections and the impact of non-pharmaceutical interventions on COVID-19 in 11 European countries.
  56. Mizutani T. Signal transduction in SARS-CoV-infected cells. Ann. NY Acad. Sci. 2007. 1102: 86–95. DOI:
  57. Zimmer C. DNA Inherited From Neanderthals May Increase Risk of Covid-19. The New York Times. July 4, 2020.
  58. Osterweil N. Case Fatality Rate for COVID-19 Near 1.4%, Increases With Age.
  59. Rabin R.C. In Italy, Coronavirus Takes a Higher Toll on Men.
  60. Wenham C., Smith J., Morgan R. COVID-19: the gendered impacts of the outbreak. Lancet. 2020. 395(10227): 846–848. DOI:
  61. Coronavirus in NY: Cases, maps, charts and resources.
  62. Wadman M. Sex hormones signal why virus hits men harder. Science. 2020: 368(6495): 1038–1039. DOI:
  63. Zaiets K., Padilla R. Coronavirus, diabetes, obesity and other underlying conditions: Which patients are most at risk?
  64. Mallapaty S. Mounting clues suggest the coronavirus might trigger diabetes.
  65. Tan T., Khoo B., Mills E.G. et al. Association Between High Serum Total Cortisol Concentrations and Mortality From COVID-19. Lancet Diabetes Endocrinol. 2020. 8(8): 659-660. DOI:
  66. Balfour H. Blood test could identify those most at risk from COVID-19. Drug Target Review. 22 May 2020.
  67. Yan L., Zhang H.-T., Goncalves J. et al. An interpretable mortality prediction model for COVID-19 patients. Nat. Mach. Intell. 2020. 2: 283–288. DOI:
  68. Yong Sh.J. Vitamin D as an Independent Risk Factor for COVID-19 Death.
  69. Fang L., Karakiulakis G., Roth M. Are patients with hypertension and diabetes mellitus at increased risk for COVID-19 infection? The Lancet. 2020. 8(4): E21. DOI:
  70. Sama I.E., Ravera A., Santema B.T. et al. Circulating Plasma Concentrations of Angiotensin-Converting Enzyme 2 in Men and Women With Heart Failure and Effects of Renin-Angiotensin-Aldosterone Inhibitors. Eur. Heart J. 2020. 41(19): 1810–1817. DOI:
  71. Murray S. New Evidence Concerning Safety of ACE Inhibitors, ARBs in COVID-19.
  72. de Simone G. Position Statement of the ESC Council on Hypertension on ACE-Inhibitors and Angiotensin Receptor Blockers. Council on Hypertension of the European Society of Cardiology. 13 Mar 2020.
  73. Radzikowska U., Ding M., Tan G. et al. Distribution of ACE2, CD147, CD26 and Other SARS-CoV-2 Associated Molecules in Tissues and Immune Cells in Health and in Asthma, COPD, Obesity, Hypertension, and COVID-19 Risk Factors. Allergy. 2020. DOI:
  74. Report of the WHO-China Joint Mission on Coronavirus Disease 2019 (COVID-19).
  75. Liu R., Wang Y., Li J., Han H., Xia Z., Liu F., Wu K., Yang L., Liu X., Zhu C. Decreased T cell populations contribute to the increased severity of COVID-19. Clin. Chim. Acta. 2020. DOI:
  76. Ying T., Li W., Dimitrov D.S. Discovery of T-Cell Infection and Apoptosis by Middle East Respiratory Syndrome Coronavirus. J. Infect. Dis. 2016. 213(6): 877–879. DOI:
  77. Shoenfeld Y. Corona (COVID-19) time musings: Our involvement in COVID-19 pathogenesis, diagnosis, treatment and vaccine planning. Autoimmun. Rev. 2020. 19(6): 102538. DOI:
  78. Cascella M., Rajnik M., Cuomo A., Dulebohn S.C., Di Napoli R. Features, Evaluation and Treatment Coronavirus (COVID-19). (Treasure Island (FL): Stat Pearls Publishing, 2020).
  79. Long B., Brady W.J., Koyfman A., Gottlieb M. Cardiovascular complications in COVID-19. The American Journal of Emergency Medicine. 2020. DOI:
  80. Xu L., Liu J., Lu M., Yang D., Zheng X. Liver injury during highly pathogenic human coronavirus infections. Liver International. 2020. 40(5): 998–1004. DOI:
  81. Riphagen S., Gomez X., Gonzalez-Martinez C., Wilkinson N., Theocharis P. Hyperinflammatory shock in children during COVID-19 pandemic. The Lancet. 2020. DOI:
  82. Kwon D. From Headaches to ‘COVID Toes,’ Coronavirus Symptoms Are a Bizarre Mix. Blood clots and inflammation may underlie many of these complications.
  83. Carod-Artal F.J. Neurological complications of coronavirus and COVID-19. Revista de Neurologia. 2020. 70(9): 311–322. DOI:
  84. Brooks M. COVID-19 Tied to Wide Range of Neuropsychiatric Complications. Medscape. June 29, 2020.
  85. Cormier Z. How Covid-19 can damage the brain. BBC News. 23 June 2020.
  86. Yasgur B.S. Three Stages to COVID-19 Brain Damage, New Review Suggests. Medscape. June 29, 2020.
  87. Negro F. Is antibody-dependent enhancement playing a role in COVID-19 pathogenesis? Swiss Med. Weekly. 2020. 150: w20249. DOI:
  88. Coronavirus disease (COVID-19) technical guidance: Laboratory testing for 2019-nCoV in humans.
  89. Summary table of available protocols in this document.
  90. SARS-CoV-2 Diagnostic Pipeline.
  91. Coronavirus Testing Picks Up in the U.S. Following Slow Start.
  92. Liuqian L., Shulun H., Wei H. 14% of Recovered Covid-19 Patients in Guangdong Tested Positive Again.
  93. Omer S.B., Malani P., Del Rio C. The COVID-19 Pandemic in the US: A Clinical Update. JAMA. 2020. DOI:
  94. Parry R.L. Coronavirus patients can't relapse, South Korean scientists believe.
  95. Ukraine has developed test systems to detect antibodies to coronavirus. The Day. April, 13, 2020. (in Ukrainian).
  96. Sona Nanotech Inc. Buy.
  97. Sheridan C. Fast, portable tests come online to curb coronavirus pandemic.  
  98. Fletcher E.R., Vijay S.L. New COVID-19 Rapid Diagnostic Approved On ‘GeneXpert’ TB Platform; Could Pave Way For More Testing In Low- & Middle-Income Countries.
  99. Coronavirus (COVID-19) Update: FDA Authorizes First Antigen Test to Help in the Rapid Detection of the Virus that Causes COVID-19 in Patients.
  100. Sofia 2 SARS antigen FIA.
  101. Medical Companies Win Approval for Rapid Coronavirus Tests.
  102. Broughton J.P., Deng X., Yu G. et al. CRISPR-Cas12-based detection of SARS-CoV-2. Nat. Biotechnol. 2020. DOI:
  103. Sanders J.M., Monogue M.L., Jodlowski T.Z., Cutrell J.B. Pharmacologic Treatments for Coronavirus Disease 2019 (COVID-19). JAMA. 2020. 323(18): 1824–1836. DOI:
  104. Kupferschmidt K., Cohen J. Race to find COVID-19 treatments accelerates. Science. 2020. 367(6485): 1412–1413. DOI:
  105. Rodell C.B. An ACE therapy for COVID-19.
  106. Leslie M. Biologists invent a new way to fight viruses with llama blood and molecular superglue.
  107. Mulligan M.J., Lyke K.E., Kitchin N. et al. Phase 1/2 Study to Describe the Safety and Immunogenicity of a COVID-19 RNA Vaccine Candidate (BNT162b1) in Adults 18 to 55 Years of Age: Interim Report. MedRXiv. DOI:
  108. Ravichandran S., Coyle E.M., Klenow L. et al. Antibody signature induced by SARS-CoV-2 spike protein immunogens in rabbits. Sci. Transl. Med. 2020. 12(550): eabc3539. DOI:
  109. Wang C., Li W., Drabek D., Okba N.M.A., van Haperen R., Osterhaus A.D.M.E., van Kuppeveld F.J.M., Haagmans B.L., Grosveld F., Bosch B.J. A human monoclonal antibody blocking SARS-CoV-2 infection. Nat. Commun. 2020. 11(1): 2251. DOI:
  110. Chi X., Yan R., Zhang J. et al. A Neutralizing Human Antibody Binds to the N-terminal Domain of the Spike Protein of SARS-CoV-2. Science. 369(6504): 650–655. DOI:  
  111. Kramer J. Coronavirus Antibody Therapies Raise Hopes — and Skepticism. Scientific American. May 29, 2020.
  112. Yuan M., Wu N.C., Zhu X., et al. A highly conserved cryptic epitope in the receptor binding domains of SARS-CoV-2 and SARS-CoV. Science. 2020. 368(6491): 630–633. DOI:
  113. Jee Ch. A trial is under way of the first new antibody medicine developed to treat COVID-19.
  114. Robbiani D.F., Gaebler C., Muecksch F. et al. Convergent antibody responses to SARS-CoV-2 in convalescent individuals. Nature. 2020. DOI:
  115. Kupferschmidt K. Scientists put survivors’ blood plasma to the test.
  116. Etherington D. FDA now allows treatment of life-threatening COVID-19 cases using blood from patients who have recovered.
  117. Demura M., Takada N. Blood plasma treatment for coronavirus set for Japan trial.
  118. Gharbharan A., Jordans C.C.E., van Kessel C.G. et al. Convalescent Plasma for COVID-19. A randomized clinical trial. MedRXiv. 2020. DOI:
  119. Biopharma encourages citizens who have undergone COVID-19 to become plasma donors for the development of drugs against coronavirus infection. Interfax-Ukraine. May, 8, 2020 (in Ukrainian).
  120. Lovett S. Coronavirus: Men produce more COVID-19 antibodies than women, study shows.
  121. The fight against COVID-19 starts with you.
  122. Al Idrus A. Takeda, CSL-led alliance and NIH to test COVID-19 plasma treatment this summer.
  123. Cohen E. Human Trials Expected To Start Next Month For Covid-19 Treatment Derived From Cows’ Blood.
  124. Sheridan C. Convalescent serum lines up as first-choice treatment for coronavirus.
  125. The first patient tests new drug against COVID-19.
  126. Camostat Mesylate in COVID-19 Outpatients.
  127. Devaux C.A., Rolain J.M., Colson P., Raoult D. New insights on the antiviral effects of chloroquine against coronavirus: what to expect for COVID-19? Int. J. Antimicrob Agents. 2020. DOI:
  128. Piller C. Former FDA leaders decry emergency authorization of malaria drugs for coronavirus.
  129. Sciama Y. Is France’s president fueling the hype over an unproven coronavirus treatment?
  130. Some Swedish hospitals have stopped using chloroquine to treat COVID-19 after reports of severe side effects.
  131. FDA cautions against use of hydroxychloroquine or chloroquine for COVID-19 outside of the hospital setting or a clinical trial due to risk of heart rhythm problems.
  132. Remdesivir.
  133. Yin W., Mao C., Luan X. et al. Structural basis for inhibition of the RNA-dependent RNA polymerase from SARS-CoV-2 by remdesivir. Science. 2020. DOI:
  134. Gordon C.J., Tchesnokov E.P., Woolner E., Perry J.K., Feng J.Y., Porter D.P., Gotte M. Remdesivir is a direct-acting antiviral that inhibits RNA-dependent RNA polymerase from severe acute respiratory syndrome coronavirus 2 with high potency. J. Biol. Chem. 2020. DOI:
  135. NIH Clinical Trial Shows Remdesivir Accelerates Recovery from Advanced COVID-19.
  136. Grein J., Ohmagari N., Shin D. et al. Compassionate Use of Remdesivir for Patients with Severe Covid-19. N. Engl. J. Med. 2020. DOI:
  137. FDA Allows For 'Emergency Use' of Remdesivir, Experimental Coronavirus Drug.
  138. Coronavirus (COVID-19) Update: FDA Issues Emergency Use Authorization for Potential COVID-19 Treatment.
  139. Shimbun A. Japan approves remdesivir for COVID-19 despite uncertainties.
  140. Taylor Ph. Remdesivir closes in on receiving first EU approval for treatment for COVID-19.
  141. Ridgeback Biotherapeutics Announces Launch of Phase 2 Trials Testing EIDD-2801 as Potential Treatment for COVID-19.
  142. Lopinavir/ritonavir.
  143. Choy K.T., Wong A.Y., Kaewpreedee P. et al. Remdesivir, Lopinavir, Emetine, and Homoharringtonine Inhibit SARS-CoV-2 Replication in Vitro. Antiviral Res. 2020. 178: 104786. DOI:
  144. The WHO Solidarity Trial for COVID-19 treatments officially launched in Indonesia.
  145. Li Y., Xie Z., Lin W. et al. An exploratory randomized controlled study on the efficacy and safety of lopinavir/ritonavir or arbidol treating adult patients hospitalized with mild/moderate COVID-19 (ELACOI). DOI:
  146. Hung I.F., Lung K.C., Tso E.Y. et al. Triple combination of interferon beta-1b, lopinavir-ritonavir, and ribavirin in the treatment of patients admitted to hospital with COVID-19: an open-label, randomised, phase 2 trial. Lancet. 2020. DOI:
  147. WHO discontinues hydroxychloroquine and lopinavir/ritonavir treatment arms for COVID-19.
  148. Kadhim A.A.H., Hadi N.R., Abdulhussein M., Zamil S.T., Zamil S.T. Preprocessing of the Candidate Antiviral Drugs against COVID-19 in Models of SARS cov2 Targets. LPMA. 2020. 106(2): 240.
  149. Rossignol J.F., Maisonneuve H. Nitazoxanide in the treatment of Taenia saginata and Hymenolepis nana infections. Am. J.Trop. Med. Hyg. 1984. 33: 511–512. DOI:
  150. Wang M., Cao R., Zhang L., Yang X., Liu J., Xu M., Shi Z., Hu Z., Zhong W., Xiao G. Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro. Cell Res. 2020. 30(3): 269–271. DOI:
  151. Scientists Identify 69 Drugs to Test Against the Coronavirus.
  152. Jin Z., Du X., Xu Y. et al. Structure of Mpro from SARS-CoV-2 and discovery of its inhibitors. Nature. 2020. DOI:
  153. The Coronavirus Patients Betrayed by Their Own Immune Systems.
  154. Efficacy and Safety of Emapalumab and Anakinra in Reducing Hyperinflammation and Respiratory Distress in Patients With COVID-19 Infection.
  155. Sagonowsky E. Roche's Actemra falls short in Italian study in early-stage COVID-19 pneumonia.
  156. Horby P., Lim W.Sh., Emberson J. et al. RECOVERY Collaborative Group Effect of Dexamethasone in Hospitalized Patients with COVID-19: Preliminary Report. MedRXiv. DOI:
  157. Poperechna D. MOZ vneslo novyy preparat u protokol likuvannya COVID-19. Ukrayinska pravda. June 25, 2020.
  158. Yasgur B.S. Colchicine Promising in COVID-19 Treatment?
  159. Day M. Covid-19: ibuprofen should not be used for managing symptoms, say doctors and scientists.
  160. Ioannou P. Rapid Response: Re: Non-steroidal anti-inflammatory drugs and COVID-19; An ambiguous correlation.
  161. Godoy M. Concerned About Taking Ibuprofen For Coronavirus Symptoms? Here's What Experts Say.
  162. Klok F.A., Kruip M.J.H.A., van der Meer N.J.M., Arbous M.S., Gommers D.A.M.P.J., Kant K.M., Kaptein F.H.J., van Paassen J., Stals M.A.M., Huisman M.V., Endeman H. Incidence of thrombotic complications in critically ill ICU patients with COVID-19. Thrombosis Research. 2020. DOI:
  163. Tang N., Bai H., Chen X., Gong J., Li D., Sun Z. Anticoagulant treatment is associated with decreased mortality in severe coronavirus disease 2019 patients with coagulopathy. Journal of Thrombosis and Haemostasis. 2020. 18(5): 1094–1099. DOI:
  164. Lugovskoy E.V., Kolesnikova I.N., Gritsenko P.G., Komissarenko S.V. Utilization of monoclonal antibodies for the quantification of molecular markers of hemostasis. Journal of Thrombosis and Haemostasis. 2003. 1(Suppl. 1): CD084. (XIX Congress of the International Society on Thrombosis and Haemostasis, Birmingham, UK, July 12-18, 2003.)
  165. Lugovskoy E.V., Gritsenko P.G., Kolesnikova I.N., Zolotareva E.N., Chernishov V.I., Nieuwenhuizen W., Komisarenko S.V. Two monoclonal antibodies to D-dimer-specific inhibitors of fibrin polymerization.Thrombosis Research. 2004. 113(3-4): 251–259. DOI:
  166. Collaboration initiated to develop COVID-19 immunotherapy.
  167. Could T-cell immunotherapy be the answer to COVID-19?
  168. Borrell B. New York clinical trial quietly tests heartburn remedy against coronavirus. Science. Apr. 26, 2020. DOI:
  169. Koch S., Pong W. First up for COVID-19: nearly 30 clinical readouts before end of April.
  170. Lim G.Y. TCM and COVID-19: China conducting trials to test efficacy and safety of traditional herbal interventions.
  171. Chapin E. Artemisia Annua Could Be Promising Treatment for COVID-19.
  172. Wadman M. Can interferons stop COVID-19 before it takes hold? Science. 2020: 369(6500): 125–126. DOI:
  173. Kupferschmidt K. These Drugs Don’t Target the Coronavirus – They Target Us.
  174. Lipsitch M. Who Is Immune to the Coronavirus?
  175. COVID-19 Antibodies Can Disappear After 2-3 Months, Study Shows.
  176. To K.K.-W., Cheng V.Ch.-Ch., Cai J.-P. et al. Seroprevalence of SARS-CoV-2 in Hong Kong and in residents evacuated from Hubei province, China: a multicohort study. Lancet Microbe. 2020. DOI:
  177. Dr. Fauci Explains The Timeline And Risks Of Creating A COVID-19 Vaccine. MSNBC.
  178. CEPI.
  179. Berkley S. COVID-19 needs a big science approach.
  180. Zheng M., Song L. Novel antibody epitopes dominate the antigenicity of spike glycoprotein in SARS-CoV-2 compared to SARS-CoV. Cell. Mol. Immunol. 2020. 17(5): 536–538. DOI:
  181. Achenbach J. The coronavirus isn’t mutating quickly, suggesting a vaccine would offer lasting protection.
  182. Moderna Announces Positive Interim Phase 1 Data for its mRNA Vaccine (mRNA-1273) Against Novel Coronavirus.
  183. Funk C.D., Laferriere C., Ardakani A. A Snapshot of the Global Race for Vaccines Targeting SARS-CoV-2 and the COVID-19 Pandemic. Front. Pharmacol. 2020. 11:937. DOI:
  184. Cohen J. Vaccine designers take first shots at COVID-19. Science. 2020. 368(6486): 14–16. DOI:
  185. Callaway E. The race for coronavirus vaccines: a graphical guide. Nature. 2020. 580: 576-577. DOI:
  186. Gao Q., Bao L., Mao H. et al. Rapid development of an inactivated vaccine candidate for SARS-CoV-2. Science. 2020. 369(6499): eabc1932. DOI:
  187. Mueller S., Stauft C.B., Kalkeri R. et al. A codon-pair deoptimized live-attenuated vaccine against respiratory syncytial virus is immunogenic and efficacious in non-human primates. Vaccine. 2020. 38(14): 2943–2948. DOI:
  188. Yu J., Tostanoski L.H., Peter L. et al. DNA vaccine protection against SARS-CoV-2 in rhesus macaques. Science. 2020. 20 May 2020: eabc6284. DOI:
  189. Draft landscape of COVID-19 candidate vaccines. WHO.
  190. Oxford COVID-19 vaccine to begin phase II/III human trials.
  191. Lauerman J. Oxford, AstraZeneca Begin Advanced Trials of Covid Vaccine. Bloomberg. 22 May 2020.
  192. Folegatti P.M., Ewer K.J., Aley P.K., et al. Safety and immunogenicity of the ChAdOx1 nCoV-19 vaccine against SARS-CoV-2: a preliminary report of a phase 1/2, single-blind, randomised controlled trial. The Lancet. 20 July, 2020. DOI:
  193. Zhu F.-C., Li Y.-H., Gua X.-H. et al. Safety, tolerability, and immunogenicity of a recombinant adenovirus type-5 vectored COVID-19 vaccine: a dose-escalation, open-label, non-randomised, first-in-human trial. Lancet. 2020. 395: 1845–1854. DOI:
  194. Haseltine W.A. Lessons for COVID-19 from the Early Days of AIDS. Scientific American. July 6, 2020.
  195. Accelerating a safe and effective COVID-19 vaccine.
  196. Draft landscape of COVID-19 candidate vaccines. WHO. 21 July, 2020.
  197. Ramesh S. Can BCG vaccine protect against Covid-19? Here’s why the excitement needs to be tempered.
  198. Sparber S. Texas A&M researchers hope tuberculosis vaccine might prevent coronavirus deaths.
  199. Brook B., Harbeson D.J., Shannon C.P. et al. BCG vaccination-induced emergency granulopoiesis provides rapid protection from neonatal sepsis. Sci. Transl. Med. 2020. 12(542): eaax4517. DOI:
  200. Arts R.J.W., Moorlag S.J.C.F.M., Novakovic B., Li Y., Wang S.Y., Oosting M., Kumar V., Xavier R.J., Wijmenga C., Joosten L.A.B., Reusken C.B.E.M., Benn C.S., Aaby P., Koopmans M.P., Stunnenberg H.G., van Crevel R., Netea M.G. BCG Vaccination Protects against Experimental Viral Infection in Humans through the Induction of Cytokines Associated with Trained Immunity. Cell Host Microbe. 2018. 23(1): 89–100.e5. DOI:
  201. A $10M Grant Enables BCG Vaccine Trial to Expand Internationally, Enrol 10,000 Healthcare Workers.
  202. Chumakov K., Benn C.S., Aaby P., Kottilil Sh., Gallo R. Can existing live vaccines prevent COVID-19? Science. 2020. 368(6496): 1187–1188. DOI:
  203. Escobar L.E., Molina-Cruz A., Barillas-Mury C.BCG vaccine protection from severe coronavirus disease 2019 (COVID-19). PNAS. 2020. 117(30): 17720–17726. DOI:
  204. Hamiel U., Kozer E., Youngster I. SARS-CoV-2 Rates in BCG-Vaccinated and Unvaccinated Young Adults. JAMA. 2020. 323(22): 2340–2341. DOI:
  205. Woodley M. Healthcare workers trial TB vaccine for coronavirus protection. newsGP. 27 Mar 2020.
  206. Kramer A.E. Decades-Old Soviet Studies Hint at Coronavirus Strategy.
  207. Report 9: Impact of non-pharmaceutical interventions (NPIs) to reduce COVID-19 mortality and healthcare demand.
  208. Yang Y.Q., Sun Q., Wang Y.X., et al. Epidemic situation analysis and trend forecast of New Coronavirus Pneumonia (NCP) in Chongqing (in Chinese). Journal of Chongqing Normal University (Natural Science). 2020. 37(1). DOI:
  209. Brovchenko I. Development of the mathematical model of Covid-19 epidemic spread in Ukraine. Svitohliad. 2020. 2(82): 2–14. (in Ukrainian).
  210. National coronavirus response: A road map to reopening.
  211. European countries are easing quarantine restrictions.
  212. Prime Minister Denys Shmyhal unveils a step-by-step quarantine exit plan. Government of Ukraine. Official website. April 24, 2020.  
  213. Ukrayina perekhodyt do nastupnoho etapu poslablennya karantynu. Ukrayinska pravda. June 1, 2020. (in Ukrainian).
  214. Leshner A. Restart science stronger after COVID-19. Science. 2020. 369(6502): 262. DOI: / science.abd5780