Visn. Nac. Akad. Nauk Ukr. 2019. (12): 20-27

B.S. Novosyadlyj
Ivan Franko National University of Lviv

2019 Nobel Prize in Physics

On October 8, the Nobel Committee at the Royal Swedish Academy of Sciences announced the decision to award the Nobel Prize in Physics in 2019. Half of the award went to Canadian-American scientist James Peebles “for theoretical discoveries in physical cosmology.” The second half of the award was shared by Swiss astrophysicists Michel Mayor and Didier Queloz “for the discovery of an exoplanet orbiting a solar-type star.” This article is about the first, so to speak, “theoretical” part of the award.

Language of article: ukrainian

Full text (PDF)



  1. Gamow G. The Evolution of the Universe. Nature. 1948. 162(4122): 680. DOI:
  2. Alpher R.A., Herman R.C., Gamow G.A. Thermonuclear Reactions in the Expanding Universe. Phys. Rev. 1948. 74(9): 1198. DOI:
  3. Doroshkevich A.G., Novikov I.D. Mean radiation density in Metagalaxy and some problems of relativistic cosmology. Dokl. Akad. Nauk SSSR. 1964. 154(4): 809.  
  4. Hoyle F., Tayler R.J. The Mystery of the Cosmic Helium Abundance. Nature. 1964. 203(4950): 1108. DOI:
  5. Dicke R.H., Peebles P.J.E., Roll P.G., Wilkinson D.T. Cosmic Black-Body Radiation. Astrophys. J. 1965. 142(5): 414. DOI:
  6. Penzias A., Wilson R. A Measurement of Excess Antenna Temperature at 4080 Mc/s. Astrophys. J. 1965. 142(5): 419. DOI:
  7. Roll P.G., Wilkinson D.T. Cosmic Background Radiation at 3.2 cm-Support for Cosmic Black-Body Radiation. Phys. Rev. Lett. 1966. 16(3): 405. DOI:
  8. Peebles P.J.E. The Black-Body Radiation Content of the Universe and the Formation of Galaxies. Astrophys. J. 1965. 142(11): 1317. DOI:
  9. Lifshitz E.M. On the gravitational stability of the expanding universe. JETP. 1946. 16: 587.
  10. Peebles P.J.E. Primeval Helium Abundance and the Primeval Fireball. Phys. Rev. Lett. 1966. 16(10): 410. DOI:
  11. Peebles P.J.E. Primordial Helium Abundance and the Primordial Fireball. II. Astrophys. J. 1966. 146(11): 546. DOI:
  12. Peebles P.J.E. Recombination of the Primeval Plasma. Astrophys. J. 1968. 153(7): 1. DOI:
  13. Sachs R.K., Wolfe A.M. Perturbations of a Cosmological Model and Angular Variations of the Microwave Background. Astrophys. J. 1967. 147(1): 73. DOI:
  14. Rees M.J., Sciama D.W. Large-scale Density Inhomogeneities in the Universe. Nature. 1968. 217(5128): 511. DOI:
  15. Silk J. Cosmic Black-Body Radiation and Galaxy Formation. Astrophys. J. 1968. 151(2): 459. DOI:
  16. Sunyaev R.A., Zeldovich Ya.B. The Spectrum of Primordial Radiation, its Distortions and their Significance. Comments Astrophys. Space Phys. 1970. 2(3): 66.
  17. Sunyaev R.A., Zeldovich Ya.B. Small-Scale Fluctuations of Relic Radiation. Astrophysics and Space Science. 1970. 7(1): 3. DOI:
  18. Sunyaev R.A., Zeldovich Ya.B. The Observations of Relic Radiation as a Test of the Nature of X-Ray Radiation from the Clusters of Galaxies. Comments Astrophys. Space Phys. 1972. 4(11): 173.
  19. Peebles P.J.E., Yu J.T. Primeval adiabatic perturbation in an expanding Universe. Astrophys. J. 1970. 162(12): 815. DOI:
  20. Peebles P.J.E. Large-scale background temperature and mass fluctuations due to scale-invariant primeval perturbations. Astrophys. J. 1982. 263: L1. DOI:
  21. Smoot G.F. et al. Structure in the COBE differential microwave radiometer first-year maps. Astrophys. J. Lett. 1992. 396: L1. DOI:
  22. Bond J.R.,. Szalay A.S. The collisionless damping of density fluctuations in an expanding universe. Astrophys. J. 1983. 274: 443. DOI:
  23. Blumenthal G.R., Faber S.M., Primack J.R., Rees M.R. Formation of galaxies and large-scale structure with dark matter. Nature. 1984. 311(5986): 517. DOI:
  24. Peebles P.J.E. Tests of cosmological models constrained by inflation. Astrophys. J. 1984. 284: 439.
  25. Starobinskii A.A. Spectrum of relict gravitational radiation and the early state of the universe. JETP Lett. 1979. 30(11): 682.
  26. Starobinsky A.A. A new type of isotropic cosmological models without singularity. Phys. Lett. B. 1980. 91(1): 99. DOI:
  27. Mukhanov V.F., Chibisov G.V. Quantum fluctuations and a nonsingular universe. JETP Lett. 1981. 33: 532.
  28. Guth A.H. Inflationary universe: A possible solution to the horizon and flatness problems. Phys. Rev. D. 1981. 23: 347. DOI:
  29. Sato K. First-order phase transition of a vacuum and the expansion of the Universe. Mon. Not. R. Astron. Soc. 1981. 195: 467. DOI:
  30. Linde A.D. A new inflationary universe scenario: a possible solution of the horizon, flatness, homogeneity, isotropy and primordial monopole problems. Phys. Lett. B. 1982. 108: 389. DOI:
  31. Hawking S.W., Moss I.L. Supercooled phase transitions in the very early universe. Phys. Lett. B. 1982. 110: 35. DOI:
  32. Albrecht A., Steinhardt P. Cosmology for grand unified theories with radiatively induced symmetry breaking. Phys. Rev. Lett. 1982. 48: 1220. DOI:
  33. Riess A.G., Filippenko A.V., Challis P. et al. Observational Evidence from Supernovae for an Accelerating Universe and a Cosmological Constant. Astron. J. 1998. 16: 1009. DOI:
  34. Schmidt B.P., Suntzeff N.B., Phillips M.M. et al. The High-Z Supernova Search: Measuring Cosmic Deceleration and Global Curvature of the Universe Using Type IA Supernovae. Astrophys. J. 1998. 507: 46. DOI:
  35. Perlmutter S., Aldering G., Goldhaber G. et al. Measurements of Omega and Lambda from 42 High-Redshift Supernovae. Astrophys. J. 1999. 517: 565. DOI:
  36. Peebles P.J.E., Ratra B. Cosmology with a Time-Variable Cosmological “Constant”. Astrophys. J. 1988. 325: L17. DOI:
  37. Ratra B., Peebles P.J.E. Cosmological consequences of a rolling homogeneous scalar field. Phys. Rev. D. 1988. 37: 3406. DOI: