Visn. Nac. Akad. Nauk Ukr. 2020. (3): 50-77
https://doi.org/10.15407/visn2020.03.050

S.V. Komisarenko, S.I. Romanyuk
Palladin Institute of Biochemistry of the National Academy of Sciences of Ukraine, Kyiv

Genome editing, or CRISPR/CAS9 a panacea for many incurable diseases or the first step to a gene apocalypse?

The review discusses the history of discovery, rapid development and further prospects for the use of a new powerful genome editing tool, CRISPR/Cas9. Taking one of the elements of the bacterial protective system, biologists have created a simple, inexpensive and fast method of altering the DNA of plants, animals and humans. Never before has humanity had such an accurate tool for gene manipulation, and this opens up great opportunities for the prevention and treatment of many diseases. At the same time, there is a heated debate in society: will CRISPR/Cas9 bring good or evil to humanity? Like any new technology, gene editing raises concerns and raises a number of serious ethical issues, especially regarding its use on germline cells and the genome of human embryos. However, it is already clear that CRISPR/Cas9 is not another fancy “toy” for scientists, but a revolutionary technology that will change our future.
Keywords: CRISPR/Cas9, genomic DNA editing, gene therapy, genetically modified organisms.

Language of article: ukrainian

Full text (PDF)

REFERENCES

  1. Meselson M., Yuan R. DNA restriction enzyme from E. coli. Nature. 1968. 217(5134): 1110–1114. DOI: https://doi.org/10.1038/2171110a0
  2. Weiss B., Richardson C.C. Enzymatic breakage and joining of deoxyribonucleic acid, I. Repair of single-strand breaks in DNA by an enzyme system from Escherichia coli infected with T4 bacteriophage. Proc. Natl. Acad. Sci. USA. 1967. 57(4): 1021–1028. DOI: https://doi.org/10.1073/pnas.57.4.1021  
  3. Deltcheva E., Chylinski K., Sharma C.M., Gonzales K., Chao Y., Pirzada Z.A., Eckert M.R., Vogel J., Charpentier E. CRISPR RNA maturation by trans-encoded small RNA and host factor RNase III. Nature. 2011. 471(7340): 602–607. DOI: https://doi.org/10.1038/nature09886
  4. Westra E.R., Semenova E., Datsenko K.A., Jackson R.N., Wiedenheft B., Severinov K., Brouns S.J. Type I-E CRISPR-cas systems discriminate target from non-target DNA through base pairing-independent PAM recognition. PLoS Genet. 2013. 9(9): e1003742. DOI: https://doi.org/10.1371/journal.pgen.1003742
  5. Ishino Y., Shinagawa H., Makino K., Amemura M., Nakata A. Nucleotide sequence of the iap gene, responsible for alkaline phosphatase isozyme conversion in Escherichia coli, and identification of the gene product. J. Bacteriol. 1987. 169(12): 5429–5433. DOI: https://doi.org/10.1128/JB.169.12.5429-5433.1987
  6. Nakata A., Amemura M., Makino K. Unusual nucleotide arrangement with repeated sequences in the Escherichia coli K-12 chromosome. J. Bacteriol. 1989. 171(6): 3553–3556. DOI: https://doi.org/10.1128/JB.171.6.3553-3556.1989
  7. Groenen P.M., Bunschoten A.E., van Soolingen D., van Embden J.D. Nature of DNA polymorphism in the direct repeat cluster of Mycobacterium tuberculosis; application for strain differentiation by a novel typing method. Mol. Microbiol. 1993. 10(5): 1057–1065. DOI: https://doi.org/10.1111/j.1365-2958.1993.tb00976.x  
  8. Mojica F.J., Díez-Villaseñor C., Soria E., Juez G. Biological significance of a family of regularly spaced repeats in the genomes of archaea, bacteria and mitochondria. Mol. Microbiol. 2000. 36(1): 244–246. DOI: https://doi.org/10.1046/j.1365-2958.2000.01838.x
  9. Jansen R., Embden J.D., Gaastra W., Schouls L.M. Identification of genes that are associated with DNA repeats in prokaryotes. Mol. Microbiol. 2002. 43(6): 1565–1575. DOI: https://doi.org/10.1046/j.1365-2958.2002.02839.x
  10. Mojica F.J., Díez-Villaseñor C., García-Martínez J., Soria E. Intervening sequences of regularly spaced prokaryotic repeats derive from foreign genetic elements. Journal of Molecular Evolution. 2005. 60(2): 174–182. DOI: https://doi.org/10.1007/s00239-004-0046-3
  11. Pourcel C., Salvignol G., Vergnaud G. CRISPR elements in Yersinia pestis acquire new repeats by preferential uptake of bacteriophage DNA, and provide additional tools for evolutionary studies. Microbiology. 2005. 151(3): 653–663. DOI: https://doi.org/10.1099/mic.0.27437-0
  12. Bolotin A., Quinquis B., Sorokin A., Ehrlich S.D. Clustered regularly interspaced short palindrome repeats (CRISPRs) have spacers of extrachromosomal origin. Microbiology. 2005. 151(8): 2551–2561. DOI: https://doi.org/10.1099/mic.0.28048-0
  13. Barrangou R., Fremaux C., Deveau H., Richards M., Boyaval P., Moineau S., Romero D.A., Horvath P. CRISPR provides acquired resistance against viruses in prokaryotes. Science. 2007. 315(5819): 1709–1712. DOI: https://doi.org/10.1126/science.1138140
  14. Brouns S.J., Jore M.M., Lundgren M., Westra E.R., Slijkhuis R.J., Snijders A.P., Dickman M.J., Makarova K.S., Koonin E.V., van der Oost J. Small CRISPR RNAs guide antiviral defense in prokaryotes. Science. 2008. 321(5891): 960–964. DOI: https://doi.org/10.1126/science.1159689
  15. Marraffini L.A., Sontheimer E.J. CRISPR interference limits horizontal gene transfer in staphylococci by targeting DNA. Science. 2008. 322(5909): 1843–1845. DOI: https://doi.org/10.1126/science.1165771
  16. Sontheimer E., Marraffini L. Target DNA interference with crRNA. U.S. Provisional Patent Application 61/009, 317, filed September 23, 2008; later published as US2010/0076057 (abandoned).
  17. Jinek M., Chylinski K., Fonfara I., Hauer M., Doudna J.A, Charpentier E. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science. 2012. 337(6096): 816–821. DOI: https://doi.org/10.1126/science.1225829
  18. Gasiunas G., Barrangou R., Horvath P., Siksnys V. Cas9-crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria. Proc. Natl. Acad. Sci. USA. 2012. 109: E2579–E2586. DOI: https://doi.org/10.1073/pnas.1208507109
  19. Mali P., Yang L., Esvelt K.M., Aach J., Guell M., DiCarlo J.E., Norville J.E., Church G.M. RNA-guided human genome engineering via Cas9. Science. 2013. 339(6121): 823–826. DOI: https://doi.org/10.1126/science.1232033
  20. Cong L., Ran F.A., Cox D., Lin S., Barretto R., Habib N., Hsu P.D., Wu X., Jiang W., Marraffini L.A., Zhang F. Multiplex genome engineering using CRISPR/Cas systems. Science. 2013. 339(6121): 819–823. DOI: https://doi.org/10.1126/science.1231143
  21. Cho S.W., Kim S., Kim J.M., Kim J.S. Targeted genome engineering in human cells with the Cas9 RNA-guided endonuclease. Nat. Biotechnol. 2013. 31(3): 230–232. DOI: https://doi.org/10.1038/nbt.2507
  22. Meganuclease. Wikipedia. https://en.wikipedia.org/wiki/Meganuclease
  23. O’Connell M.R., Oakes B.L., Sternberg S.H., East-Seletsky A., Kaplan M., Doudna J.A. Programmable RNA recognition and cleavage by CRISPR/Cas9. Nature. 2014. 516(7530): 263–266. DOI: https://doi.org/10.1038/nature13769
  24. Nelles D.A., Fang M.Y., O'Connell M.R., Xu J.L., Markmiller S.J., Doudna J.A., Yeo G.W. Programmable RNA tracking in live cells with CRISPR/Cas9. Cell. 2016. 165(2): 488–496. DOI: https://doi.org/10.1016/j.cell.2016.02.054
  25. Vandenberghe L.H. Addgene: molecular therapy interview with Melina Fan and Karen Guerin. https://www.cell.com/molecular-therapy-family/molecular-therapy/fulltext/S1525-0016(18)30582-3 DOI: https://doi.org/10.1016/j.ymthe.2018.12.001
  26. Brown K.V. Why CRISPR-edited food may be in supermarkets sooner than you think. https://gizmodo.com/why-crispr-edited-food-may-be-in-supermarkets-sooner-th-1822025033
  27. Lee J., Wang F. Gene-edited baby by Chinese scientist: the opener of the pandora’s box. Science Insights. 2018. 2018:e000178. DOI: https://doi.org/10.15354/si.18.co015
  28. Reardon S. CRISPR gene-editing creates wave of exotic model organisms. Nature. 2019. 568(7753): 441–442. DOI: https://doi.org/10.1038/d41586-019-01300-9
  29. Wade N. Genes color a butterfly’s wings. Now scientists want to do it themselves. https://www.nytimes.com/2017/09/18/science/butterfly-wing-color-patterns-gene-editing.html
  30. Qi L.S., Larson M.H., Gilbert L.A., Doudna J.A., Weissman J.S., Arkin A.P., Lim W.A. Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression. Cell. 2013. 152(5): 1173–1183. DOI: https://doi.org/10.1016/j.cell.2013.02.022
  31. Kungulovski G., Jeltsch A. Epigenome editing: state of the art, concepts, and perspectives. Trends Genet. 2016. 32(2): 101–113. DOI: https://doi.org/10.1016/j.tig.2015.12.001
  32. Pefanis E., Wang J.G., Rothschild G., Lim J., Kazadi D., Sun J.B., Federation A., Chao J., Elliott O., Liu Z.P., Economides A.N., Bradner J.E., Rabadan R., Basu U. RNA exosome-regulated long non-coding RNA transcription controls super-enhancer activity. Cell. 2015. 161(4): 774–789. DOI: https://doi.org/10.1016/j.cell.2015.04.034
  33. Elling R., Chan J., Fitzgerald K.A. Emerging role of long noncoding RNAs as regulators of innate immune cell development and inflammatory gene expression. Eur. J. Immunol. 2016. 46(3): 504–512. DOI: https://doi.org/10.1002/eji.201444558
  34. Chen B., Gilbert L.A., Cimini B.A., Schnitzbauer J., Zhang W., Li G.W., Park J., Blackburn E.H., Weissman J.S., Qi L.S., Huang B. Dynamic imaging of genomic loci in living human cells by an optimized CRISPR/Cas system. Cell. 2013. 155(7): 1479–1491. DOI: https://doi.org/10.1016/j.cell.2013.12.001
  35. Hajian R., Balderston S., Tran T., deBoer T., Etienne J., Sandhu M., Wauford N.A., Chung J.Y., Nokes J., Athaiya M., Paredes J., Peytavi R., Goldsmith B., Murthy N., Conboy I.M., Aran K. Detection of unamplified target genes via CRISPR-Cas9 immobilized on a graphene field-effect transistor. Nat. Biomed. Eng. 2019. 3(6): 427–437. DOI: https://doi.org/10.1038/s41551-019-0371-x
  36. CRISPR's future for point-of-care diagnostics. https://www.diagnosticsworldnews.com/news/2020/02/18/crispr%27s-future-for-point-of-care-diagnostics
  37. List of awards and honors received by Jennifer Doudna. Wikipedia. https://en.wikipedia.org/wiki/List_of_awards_and_honors_received_by_Jennifer_Doudna
  38. Niu Y., Shen B., Cui Y., Chen Y., Wang J., Wang L., Kang Y., Zhao X., Si W., Li W., Xiang A.P., Zhou J., Guo X., Bi Y., Si C., Hu B., Dong G., Wang H., Zhou Z., Li T., Tan T., Pu X., Wang F., Ji S., Zhou Q., Huang X., Ji W., Sha J. Generation of gene-modified cynomolgus monkey via Cas9/RNA-mediated gene targeting in one-cell embryos. Cell. 2014. 156(4): 836–843. DOI: https://doi.org/10.1016/j.cell.2014.01.027
  39. Shalem O., Sanjana N.E., Hartenian E., Shi X., Scott D.A., Mikkelsen T.S., Heckl D., Ebert B.L., Root D.E., Doench J.G., Zhang F. Genome-scale CRISPR/Cas9 knockout screening in human cells. Science. 2014. 343(6166): 84–87. DOI: https://doi.org/10.1126/science.1247005
  40. Raphael B.J., Dobson J.R., Oesper L., Vandin F. Identifying driver mutations in sequenced cancer genomes: computational approaches to enable precision medicine. Genome Med. 2014. 6(1): 5. DOI: https://doi.org/10.1186/gm524
  41. Wang T., Wei J.J., Sabatini D.M., Lander E.S. Genetic screens in human cells using the CRISPR/Cas9 system. Science. 2014. 343(6166): 80–84. DOI: https://doi.org/10.1126/science.1246981
  42. Baltimore D., Berg P., Botchan M., Carroll D., Charo R.A., Church G., Corn J.E., Daley G.Q., Doudna J.A., Fenner M., Greely H.T., Jinek M., Martin G.S., Penhoet E., Puck J., Sternberg S.H., Weissman J.S., Yamamoto K.R. Biotechnology. A prudent path forward for genomic engineering and germline gene modification. Science. 2015. 348(6230): 36–38. DOI: https://doi.org/10.1126/science.aab1028
  43. Vogel G. Bioethics. Embryo engineering alarm. Science. 2015. 347(6228): 1301. DOI: https://doi.org/10.1126/science.347.6228.1301
  44. Clapper J.R. Worldwide threat assessment of the US intelligence community. https://www.dni.gov/files/documents/SASC_Unclassified_2016_ATA_SFR_FINAL.pdf
  45. Baumgaertner E. As D.I.Y. gene editing gains popularity, ‘Someone is going to get hurt’. https://www.nytimes.com/2018/05/14/science/biohackers-gene-editing-virus.html
  46. Liang P., Xu Y., Zhang X., Ding C., Huang R., Zhang Z., Lv J., Xie X., Chen Y., Li Y., Sun Y., Bai Y., Songyang Z., Ma W., Zhou C., Huang J. CRISPR/Cas9-mediated gene editing in human tripronuclear zygotes. Protein Cell. 2015. 6(5): 363–372. DOI: https://doi.org/10.1007/s13238-015-0153-5
  47. Ran F.A., Hsu P.D., Lin C.Y., Gootenberg J.S., Konermann S., Trevino A.E., Scott D.A., Inoue A., Matoba S., Zhang Y., Zhang F. Double nicking by RNA-guided CRISPR Cas9 for enhanced genome editing specificity. Cell. 2013. 154(6): 1380–1389. DOI: https://doi.org/10.1016/j.cell.2013.08.021
  48. Fu Y., Sander J.D., Reyon D., Cascio V.M., Joung J.K. Improving CRISPR-Cas nuclease specificity using truncated guide RNAs. Nat. Biotechnol. 2014. 32(3): 279–284. DOI: https://doi.org/10.1038/nbt.2808
  49. Kleinstiver B.P., Prew M.S., Tsai S.Q., Topkar V.V., Nguyen N.T., Zheng Z., Gonzales A.P., Li Z., Peterson R.T., Yeh J.R., Aryee M.J., Joung J.K. Engineered CRISPR/Cas9 nucleases with altered PAM specificities. Nature. 2015. 523(7561): 481–485. DOI: https://doi.org/10.1038/nature14592
  50. Guilinger J.P., Thompson D.B., Liu D.R. Fusion of catalytically inactive Cas9 to FokI nuclease improves the specificity of genome modification. Nat. Biotechnol. 2014. 32(6): 577–582. DOI: https://doi.org/10.1038/nbt.2909
  51. Slaymaker I.M., Gao L., Zetsche B., Scott D.A., Yan W.X., Zhang F. Rationally engineered Cas9 nucleases with improved specificity. Science. 2016. 351(6268): 84–88. DOI: https://doi.org/10.1126/science.aad5227
  52. Kleinstiver B.P., Pattanayak V., Prew M.S., Tsai S.Q., Nguyen N.T., Zheng Z., Joung J.K. High-fidelity CRISPR/Cas9 nucleases with no detectable genome-wide off-target effects. Nature. 2016. 529(7587): 490–495. DOI: https://doi.org/10.1038/nature16526
  53. Zhou W., Deiters A. Conditional Control of CRISPR/Cas9 Function. Angew. Chem. Int. Ed. Engl. 2016. 55(18): 5394–5399. DOI: https://doi.org/10.1002/anie.201511441
  54. Byrne J.A., Pedersen D.A., Clepper L.L., Nelson M., Sanger W.G., Gokhale S., Wolf D.P., Mitalipov S.M. Producing primate embryonic stem cells by somatic cell nuclear transfer. Nature. 2007. 450(7169): 497–502. DOI: https://doi.org/10.1038/nature06357
  55. Tachibana M., Sparman M., Sritanaudomchai H., Ma H., Clepper L., Woodward J., Li Y., Ramsey C., Kolotushkina O., Mitalipov S. Mitochondrial gene replacement in primate offspring and embryonic stem cells. Nature. 2009. 461(7262): 367–372. DOI: https://doi.org/10.1038/nature08368
  56. Tachibana M., Amato P., Sparman M., Gutierrez N.M., Tippner-Hedges R., Ma H., Kang E., Fulati A., Lee H.S., Sritanaudomchai H., Masterson K., Larson J., Eaton D., Sadler-Fredd K., Battaglia D., Lee D., Wu D., Jensen J., Patton P., Gokhale S., Stouffer R.L., Wolf D., Mitalipov S. Human embryonic stem cells derived by somatic cell nuclear transfer. Cell. 2013. 153(6): 1228–1238. DOI: https://doi.org/10.1016/j.cell.2013.06.042
  57. Kang E., Wu J., Gutierrez N.M., Koski A., Tippner-Hedges R., Agaronyan K., Platero-Luengo A., Martinez-Redondo P., Ma H., Lee Y., Hayama T., Van Dyken C., Wang X., Luo S., Ahmed R., Li Y., Ji D., Kayali R., Cinnioglu C., Olson S., Jensen J., Battaglia D., Lee D., Wu D., Huang T., Wolf D.P., Temiakov D., Belmonte J.C., Amato P., Mitalipov S. Mitochondrial replacement in human oocytes carrying pathogenic mitochondrial DNA mutations. Nature. 2016. 540(7632): 270–275. DOI: https://doi.org/10.1038/nature20592
  58. Ma H., Marti-Gutierrez N., Park S.W., Wu J., Lee Y., Suzuki K., Koski A., Ji D., Hayama T., Ahmed R., Darby H., Van Dyken C., Li Y., Kang E., Park A.R., Kim D., Kim S.T., Gong J., Gu Y., Xu X., Battaglia D., Krieg S.A., Lee D.M., Wu D.H., Wolf D.P., Heitner S.B., Belmonte J.C.I., Amato P., Kim J.S., Kaul S., Mitalipov S. Correction of a pathogenic gene mutation in human embryos. Nature. 2017. 548(7668): 413–419. DOI: https://doi.org/10.1038/nature23305
  59. Second woman carrying gene-edited baby, Chinese authorities confirm. https://www.theguardian.com/science/2019/jan/22/second-woman-carrying-gene-edited-baby-chinese-authorities-confirm
  60. CRISPR scientist gets three years of jail time for creating gene-edited babies. https://gizmodo.com/crispr-scientist-gets-three-years-of-jail-time-for-crea-1840724277
  61. Act now on CRISPR babies. Nature. 2019. 570(137). DOI: https://doi.org/10.1038/d41586-019-01786-3
  62. Collins F.S. NIH Director on Human Gene Editing: 'We Must Never Allow our Technology to Eclipse our Humanity'. https://www.discovermagazine.com/health/nih-director-on-human-gene-editing-we-must-never-allow-our-technology-to
  63. Gene mutation meant to protect from HIV 'raises risk of early death'. https://www.theguardian.com/science/2019/jun/03/gene-mutation-protect-hiv-raises-risk-early-death
  64. Andorno R., Yamin A.E. The right to design babies? Human rights and bioethics. https://www.openglobalrights.org/the-right-to-design-babies-human-rights-and-bioethics/
  65. Citorik R.J., Mimee M., Lu T.K. Sequence-specific antimicrobials using efficiently delivered RNA-guided nucleases. Nat. Biotechnol. 2014. 32(11): 1141–1145. DOI: https://doi.org/10.1038/nbt.3011
  66. Bikard D., Euler C.W., Jiang W., Nussenzweig P.M., Goldberg G.W., Duportet X., Fischetti V.A., Marraffini L.A. Exploiting CRISPR-Cas nucleases to produce sequence-specific antimicrobials. Nat. Biotechnol. 2014. 32(11): 1146–1150. DOI: https://doi.org/10.1038/nbt.3043
  67. Yosef I., Manor M., Kiro R., Qimron U. Temperate and lytic bacteriophages programmed to sensitize and kill antibiotic-resistant bacteria. Proc. Natl. Acad. Sci. USA. 2015. 112(23): 7267–7272. DOI: https://doi.org/10.1073/pnas.1500107112
  68. Gantz V.M., Jasinskiene N., Tatarenkova O., Fazekas A., Macias V.M., Bier E., James A.A. Highly efficient Cas9-mediated gene drive for population modification of the malaria vector mosquito Anopheles stephensi. Proc. Natl. Acad. Sci. USA. 2015. 112(49): E6736–E6743. DOI: https://doi.org/10.1073/pnas.1521077112
  69. Gantz V.M., Bier E. The mutagenic chain reaction: a method for converting heterozygous to homozygous mutations. Science. 2015. 348(6233): 442–444. DOI: https://doi.org/10.1126/science.aaa5945
  70. Stokstad E. Genetically engineered moths can knock down crop pests, but will they take off? https://www.sciencemag.org/news/2020/01/genetically-engineered-moths-can-knock-down-crop-pests-will-they-take   DOI: https://doi.org/10.1126/science.abb1078
  71. Yang L., Güell M., Niu D., George H., Lesha E., Grishin D., Aach J., Shrock E., Xu W., Poci J., Cortazio R., Wilkinson R.A., Fishman J.A., Church G. Genome-wide inactivation of porcine endogenous retroviruses (PERVs). Science. 2015. 350(6264): 1101–1104. DOI: https://doi.org/10.1126/science.aad1191
  72. Niu D., Wei H.J., Lin L., George H., Wang T., Lee I.H., Zhao H.Y., Wang Y., Kan Y., Shrock E., Lesha E., Wang G., Luo Y., Qing Y., Jiao D., Zhao H., Zhou X., Wang S., Wei H., Güell M., Church G.M., Yang L. Inactivation of porcine endogenous retrovirus in pigs using CRISPR-Cas9. Science. 2017. 357(6357): 1303–1307. DOI: https://doi.org/10.1126/science.aan4187
  73. Gene editing spurs hope for transplanting pig organs into humans. https://www.nytimes.com/2017/08/10/health/gene-editing-pigs-organ-transplants.html
  74. Nunes Dos Santos R.M., Carneiro D'Albuquerque L.A., Reyes L.M., Estrada J.L., Wang Z.Y., Tector M., Tector A.J. CRISPR/Cas and recombinase-based human-to-pig orthotopic gene exchange for xenotransplantation. J. Surg. Res. 2018. 229: 28–40. DOI: https://doi.org/10.1016/j.jss.2018.03.051
  75. Dong C., Qu L., Wang H., Wei L., Dong Y., Xiong S. Targeting hepatitis B virus cccDNA by CRISPR/Cas9 nuclease efficiently inhibits viral replication. Antiviral Res. 2015. 118: 110–117. DOI: https://doi.org/10.1016/j.antiviral.2015.03.015
  76. Kaminski R., Chen Y., Fischer T., Tedaldi E., Napoli A., Zhang Y., Karn J., Hu W., Khalili K. Elimination of HIV-1 genomes from human T-lymphoid cells by CRISPR/Cas9 gene editing. Sci. Rep. 2016. 6: 22555. DOI: https://doi.org/10.1038/srep22555
  77. Wang Z., Pan Q., Gendron P., Zhu W., Guo F., Cen S., Wainberg M.A., Liang C. CRISPR/Cas9-derived mutations both inhibit HIV-1 replication and accelerate viral escape. Cell Rep. 2016. 15(3): 481–489. DOI: https://doi.org/10.1016/j.celrep.2016.03.042
  78. Kang X., He W., Huang Y., Yu Q., Chen Y., Gao X., Sun X., Fan Y. Introducing precise genetic modifications into human 3PN embryos by CRISPR/Cas-mediated genome editing. J. Assist. Reprod. Genet. 2016. 33(298): 1–8. DOI: https://doi.org/10.1007/s10815-016-0710-8
  79. Xu L., Yang H., Gao Y., Chen Z., Xie L., Liu Y., Liu Y., Wang X., Li H., Lai W., He Y., Yao A., Ma L., Shao Y., Zhang B., Wang C., Chen H., Deng H. CRISPR/Cas9-Mediated CCR5 Ablation in Human Hematopoietic Stem/Progenitor Cells Confers HIV-1 Resistance In Vivo. Mol Ther. 2017. 25(8): 1782–1789. DOI: https://doi.org/10.1016/j.ymthe.2017.04.027  
  80. Dash P.K., Kaminski R., Bella R., Su H., Mathews S., Ahooyi T.M., Chen C., Mancuso P., Sariyer R., Ferrante P., Donadoni M., Robinson J.A., Sillman B., Lin Z., Hilaire J.R., Banoub M., Elango M., Gautam N., Mosley R.L., Poluektova L.Y., McMillan J., Bade A.N., Gorantla S., Sariyer I.K., Burdo T.H., Young W.B., Amini S., Gordon J., Jacobson J.M., Edagwa B., Khalili K., Gendelman H.E. Sequential LASER ART and CRISPR treatments eliminate HIV-1 in a subset of infected humanized mice. Nat. Commun. 2019. 10(1): 2753. DOI: https://doi.org/10.1038/s41467-019-10366-y
  81. Yuan M., Webb E., Lemoine N.R., Wang Y. CRISPR-Cas9 as a powerful tool for efficient creation of oncolytic viruses. Viruses. 2016. 8(3): E72. DOI: https://doi.org/10.3390/v8030072
  82. Kennedy E.M., Kornepati A.V., Goldstein M., Bogerd H.P., Poling B.C., Whisnant A.W., Kastan M.B., Cullen B.R. Inactivation of the human papillomavirus E6 or E7 gene in cervical carcinoma cells by using a bacterial CRISPR/Cas RNA-guided endonuclease. J. Virol. 2014. 88(20): 11965–11972. DOI: https://doi.org/10.1128/JVI.01879-14
  83. Miller J.F., Sadelain M. The journey from discoveries in fundamental immunology to cancer immunotherapy. Cancer Cell. 2015. 27(4): 439–449. DOI: https://doi.org/10.1016/j.ccell.2015.03.007
  84. Roth T.L., Puig-Saus C., Yu R., Shifrut E., Carnevale J., Li P.J., Hiatt J., Saco J., Krystofinski P., Li H., Tobin V., Nguyen D.N., Lee M.R., Putnam A.L., Ferris A.L., Chen J.W., Schickel J.N., Pellerin L., Carmody D., Alkorta-Aranburu G., Del Gaudio D., Matsumoto H., Morell M., Mao Y., Cho M., Quadros R.M., Gurumurthy C.B., Smith B., Haugwitz M., Hughes S.H., Weissman J.S., Schumann K., Esensten J.H., May A.P., Ashworth A., Kupfer G.M., Greeley S.A.W., Bacchetta R., Meffre E., Roncarolo M.G., Romberg N., Herold K.C., Ribas A., Leonetti M.D., Marson A. Reprogramming human T cell function and specificity with non-viral genome targeting. Nature. 2018. 559(7714): 405–409. DOI: https://doi.org/10.1038/s41586-018-0326-5
  85. Zaroff S. CAR T-Cell therapies with a bispecific twist. Genet. Eng. Biotech. N. 2018. 38(13). https://www.genengnews.com/magazine/car-t-cell-therapies-with-a-bispecific-twist/ DOI: https://doi.org/10.1089/gen.38.13.09
  86. Kojima R., Scheller L., Fussenegger M. Nonimmune cells equipped with T-cell-receptor-like signaling for cancer cell ablation. Nature Chemical Biology. 2018. 14: 42–49. DOI: https://doi.org/10.1038/nchembio.2498
  87. Montel-Hagen A., Seet C.S., Li S., Chick B., Zhu Y., Chang P., Tsai S., Sun V., Lopez S., Chen H.C., He C., Chin C.J., Casero D., Crooks G.M. Organoid-induced differentiation of conventional T cells from human pluripotent stem cells. Cell Stem Cell. 2019. 24(3): 376–389.e8. DOI: https://doi.org/10.1016/j.stem.2018.12.011
  88. White M.K., Khalili K. CRISPR/Cas9 and cancer targets: future possibilities and present challenges. Oncotarget. 2016. 7(11): 12305–12317. DOI: https://doi.org/10.18632/oncotarget.7104
  89. Cyranoski D. CRISPR gene-editing tested in a person for the first time. Nature News. 2016. 539(7630): 479. DOI: https://doi.org/10.1038/nature.2016.20988
  90. New cancer drug targets accelerate path to precision medicine. https://www.drugtargetreview.com/news/42672/new-cancer-drug-targets-accelerate-path-to-precision-medicine/
  91. Booth C., Gaspar H.B., Thrasher A.J. Treating immunodeficiency through HSC gene therapy. Trends Mol. Med. 2016. 22(4): 317–327. DOI: https://doi.org/10.1016/j.molmed.2016.02.002  
  92. Guan Y., Ma Y., Li Q., Sun Z., Ma L., Wu L., Wang L., Zeng L., Shao Y., Chen Y., Ma N., Lu W., Hu K., Han H., Yu Y., Huang Y., Liu M., Li D. CRISPR/Cas9-mediated somatic correction of a novel coagulator factor IX gene mutation ameliorates hemophilia in mouse. EMBO Mol. Med. 2016. 8(5): 477–488. DOI: https://doi.org/10.15252/emmm.201506039
  93. Nelson C.E., Hakim C.H., Ousterout D.G., Thakore P.I., Moreb E.A., Castellanos Rivera R.M., Madhavan S., Pan X., Ran F.A., Yan W.X., Asokan A., Zhang F., Duan D., Gersbach C.A. In vivo genome editing improves muscle function in a mouse model of Duchenne muscular dystrophy. Science. 2016. 351(6271): 403–407. DOI: https://doi.org/10.1126/science.aad5143
  94. DeWitt M.A., Magis W., Bray N.L., Wang T., Berman J.R., Urbinati F., Heo S.J., Mitros T., Muñoz D.P., Boffelli D., Kohn D.B., Walters M.C., Carroll D., Martin D.I., Corn J.E. Selection-free genome editing of the sickle mutation in human adult hematopoietic stem/progenitor cells. Sci. Transl. Med. 2016. 8(360): 360ra134. DOI: https://doi.org/10.1126/scitranslmed.aaf9336
  95. CRISPR patent fight turns ugly as UC accuses Broad researchers of lying about claims. https://www.genomeweb.com/business-news/crispr-patent-fight-turns-ugly-uc-accuses-broad-researchers-lying-about-claims
  96. Sanders R. UC rings out 2019 with its 20th CRISPR patent. https://news.berkeley.edu/2019/12/31/uc-rings-out-2019-with-its-20th-crispr-patent/
  97. Craven L., Herbert M., Murdoch A., Murphy J., Lawford Davies J., Turnbull D.M. Research into policy: a brief history of mitochondrial donation. Stem Cells. 2016. 34(2): 265–267. DOI: https://doi.org/10.1002/stem.2221
  98. Callaway E. UK scientists gain license to edit genes in human embryos. Nature News. 2016. 530(7588): 18. DOI: https://doi.org/10.1038/nature.2016.19270  
  99. Mills P. Genome editing and human reproduction: The Nuffield Council on Bioethics' report. https://www.bionews.org.uk/page_137343
  100. Becker R. The 'three-parent baby' fertility doctor needs to stop marketing the procedure, FDA says. https://www.theverge.com/2017/8/5/16100680/three-parent-baby-fertility-doctor-fda-letter-violations
  101. This fertility doctor is pushing the boundaries of human reproduction, with little regulation. https://www.washingtonpost.com/national/health-science/this-fertility-doctor-is-pushing-the-boundaries-of-human-reproduction-with-little-regulation/2018/05/11/ea9105dc-1831-11e8-8b08-027a6ccb38eb_story.html
  102. Sangamo ZFN Technology Platform. 2018. https://www.sangamo.com/application/files/6915/3002/3307/IR-Technology_v06.12.18_1.pdf
  103. Haridy R. First CRISPR therapy administered in landmark human trial. https://newatlas.com/crispr-trial-underway-vertex-gene-therapy/58643/
  104. The Future of CRISPR. http://www.fwreports.com/dossier/the-future-of-crispr/#.XmgL-kFR2Uk
  105. "Tegsedi": an oligonucleotide drug against familial amyloid polyneuropathy. (in Russian). https://mosmedpreparaty.ru/news/16897

[«Тегседи»: олигонуклеотидное лекарство против семейной амилоидной полинейропатии.]

  1. Stolberg S.G. The biotech death of Jesse Gelsinger. http://www.nytimes.com/1999/11/28/magazine/the-biotech-death-of-jesse-gelsinger.html
  2. Bersenev A. The history of gene therapy drugs approval on the market. http://stemcellassays.com/2011/12/history-gene-therapy-drugs-approval-market/
  3. Morrison C. 1-million price tag set for Glybera gene therapy. Nature Biotechnology. 2015. 33: 217–218. DOI: https://doi.org/10.1038/nbt0315-217
  4. Kozubek J. Who will pay for CRISPR? https://www.statnews.com/2017/06/26/crispr-insurance-companies-pay/
  5. Talimogene laherparepvec. Wikipedia. https://en.wikipedia.org/wiki/Talimogene_laherparepvec
  6. Kegel M. Imlygic-Yervoy combo twice as effective as Yervoy in fighting melanoma, study finds. https://immuno-oncologynews.com/2017/10/12/melanoma-investigational-therapy-combo-imlygic-yervoy-twice-as-effective-yervoy-alone-study-finds/
  7. Mullin E. A gene therapy that cures a rare genetic disease just got its first customer, a year after it was approved. http://www.businessinsider.com/gsks-strimvelis-gene-therapy-used-for-the-first-time-after-approval-2017-5
  8. Al Idrus A. Orchard Therapeutics' 2019: Pipeline progress, breaking ground on its $90M manufacturing site. https://www.fiercebiotech.com/biotech/orchard-therapeutics-2019-pipeline-progress-breaking-ground-its-90m-manufacturing-site
  9. Sampson T.R., Saroj S.D., Llewellyn A.C., Tzeng Y.L., Weiss D.S. A CRISPR/Cas system mediates bacterial innate immune evasion and virulence. Nature. 2013. 497(7448): 254–257. DOI: https://doi.org/10.1038/nature12048
  10. Koonin E.V., Krupovic M. Evolution of adaptive immunity from transposable elements combined with innate immune systems. Nat. Rev. Genet. 2015. 16(3): 184–192. DOI: https://doi.org/10.1038/nrg3859
  11. Wright A.V., Liu J.J., Knott G.J., Doxzen K.W., Nogales E., Doudna J.A. Structures of the CRISPR genome integration complex. Science. 2017. 357(6356): 1113–1118. DOI: https://doi.org/10.1126/science.aao0679
  12. Jiang F., Taylor D.W., Chen J.S., Kornfeld J.E., Zhou K., Thompson A.J., Nogales E., Doudna J.A. Structures of a CRISPR/Cas9 R-loop complex primed for DNA cleavage. Science. 2016. 351(6275): 867–871. DOI: https://doi.org/10.1126/science.aad8282
  13. Zetsche B., Gootenberg J.S., Abudayyeh O.O., Slaymaker I.M., Makarova K.S., Essletzbichler P., Volz S.E., Joung J., van der Oost J., Regev A., Koonin E.V., Zhang F. Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system. Cell. 2015. 163(3): 759–771. DOI: https://doi.org/10.1016/j.cell.2015.09.038
  14. Gleeson A., Sawyer A. CRISPR/Cas9: the gold standard of genome editing? Biotechniques. 2018. 64(6): 239–243. DOI: https://doi.org/10.2144/btn-2018-0066
  15. Sansbury B.M., Wagner A.M., Nitzan E., Gabi T., Kmeic E.B. CRISPR-directed in vitro gene editing of plasmid DNA catalyzed by Cpf1 (Cas12a) nuclease and a mammalian cell-free extract. CRISPR J. 2018. 1(2): 191–202. DOI: https://doi.org/10.1089/crispr.2018.0006
  16. Burstein D., Harrington L.B., Strutt S.C., Probst A.J., Anantharaman K., Thomas B.C., Doudna J.A., Banfield J.F. New CRISPR-Cas systems from uncultivated microbes. Nature. 2017. 542(7640): 237–241. DOI: https://doi.org/10.1038/nature21059
  17. Hegge J.W., Swarts D.C., van der Oost J. Prokaryotic Argonaute proteins: novel genome-editing tools? Nat. Rev. Microbiol. 2017. 16(1): 5–11. DOI: https://doi.org/10.1038/nrmicro.2017.73
  18. Harrington L.B., Burstein D., Chen J.S., Paez-Espino D., Ma E., Witte I.P., Cofsky J.C., Kyrpides N.C., Banfield J.F., Doudna J.A. Programmed DNA Destruction by Miniature CRISPR-Cas14 Enzymes. Science. 2018. 362(6416): 839–842. DOI: https://doi.org/10.1126/science.aav4294
  19. Abudayyeh O.O., Gootenberg J.S., Konermann S., Joung J., Slaymaker I.M., Cox D.B., Shmakov S., Makarova K.S., Semenova E., Minakhin L., Severinov K., Regev A., Lander E.S., Koonin E.V., Zhang F. C2c2 is a single-component programmable RNA-guided RNA-targeting CRISPR effector. Science. 2016. 353(6299): aaf5573. DOI: https://doi.org/10.1126/science.aaf5573
  20. Smargon A.A., Cox D.B., Pyzocha N.K., Zheng K., Slaymaker I.M., Gootenberg J.S., Abudayyeh O.A., Essletzbichler P., Shmakov S., Makarova K.S., Koonin E.V., Zhang F. Cas13b is a type VI-B CRISPR-associated RNA-guided RNase differentially regulated by accessory proteins Csx27 and Csx28. Mol. Cell. 2017. 65(4): 618–630.e7. DOI: https://doi.org/10.1016/j.molcel.2016.12.023
  21. Yan W.X., Chong S., Zhang H., Makarova K.S., Koonin E.V., Cheng D.R., Scott D.A. Cas13d is a compact RNA-targeting type VI CRISPR effector positively modulated by a WYL-domain-containing accessory protein. Mol Cell. 2018. 70(2): 327–339. DOI: https://doi.org/10.1016 / j.molcel.2018.02.028
  22. Chatterjee P., Jakimo N., Jacobson J.M. Minimal PAM specificity of a highly similar SpCas9 ortholog. Sci. Adv. 2018. 4(10): eaau0766. DOI: https://doi.org/10.1126/sciadv.aau0766
  23. New DNA ‘shredder’ technique goes beyond CRISPR’s scissors. https://www.drugtargetreview.com/news/42518/new-dna-shredder-technique-goes-beyond-crisprs-scissors/
  24. Sadhu M.J., Bloom J.S., Day L., Siegel J.J., Kosuri S., Kruglyak L. Highly parallel genome variant engineering with CRISPR-Cas9. Nat. Genet. 2018. 50(4): 510–514. DOI: https://doi.org/10.1038/s41588-018-0087-y
  25. Enzyme fragment complementation assay technology. https://www.discoverx.com/technologies-platforms/enzyme-fragment-complementation-technology
  26. Biosensor development using CRISPR to quantify endogenous protein modulated by targeted protein degraders. http://www.healthtech.com/eurofins-biosensor-Development-using-crispr/
  27. Zengerle M., Chan K.-H., Ciulli A. Selective small molecule induced degradation of the BET bromodomain protein BRD4. ACS Chem. Biol. 2015. 10(8): 1770. DOI: https://doi.org/10.1021/acschembio.5b00216
  28. Single-stranded DNA synthesis service. https://www.genscript.com/new-single-stranded-dna-synthesis-service.html
  29. Strecker J., Ladha A., Gardner Z., Schmid-Burgk J.L., Makarova K.S., Koonin E.V., Zhang F. RNA-guided DNA insertion with CRISPR-associated transposases. Science. 2019. 365(6448): 48–53. DOI: https://doi.org/10.1126/science.aax9181
  30. Stafforst T., Schneider M.F. An RNA-deaminase conjugate selectively repairs point mutations. Angew. Chem. Int. Ed. Engl. 2012. 51(44): 11166–11169. DOI: https://doi.org/10.1002/anie.201206489
  31. Reardon S. Step aside CRISPR, RNA editing is taking off. Nature. 2020. 578(7793): 24–27. DOI: https://doi.org/10.1038/d41586-020-00272-5
  32. Pennisi E. The CRISPR craze. Science. 2013. 341(6148): 833–836. DOI: https://doi.org/10.1126/science.341.6148.833
  33. Gene editing like CRISPR is too important to be left to scientists alone. https://www.theguardian.com/commentisfree/2019/oct/22/gene-editing-crispr-scientists