Visn. Nac. Akad. Nauk Ukr. 2016. (12): 74-86
https://doi.org/10.15407/visn2016.12.074

V.O. Kovtunenko, M.S. Miroshnychenko
Taras Shevchenko National University of Kyiv

ARTIFICIAL MOLECULAR MACHINES
Nobel Prize in Chemistry for 2016

The Nobel Prize in Chemistry in 2016 for "design and synthesis of molecular machines" was awarded to Jean-Pierre Sauvage (University of Strasbourg, France), Sir J. Fraser Stoddart (Northwestern University, USA) and Bernard Lucas Feringa (University of Groningen, Netherlands). Awarding the Nobel Prize is based on synthesis of catenanes, rotaxanes, Borromean rings, the characteristic feature of which is the combination of several individual organic molecules in a supramolecular entity that is held by mechanical coupling. Representatives of the Royal Swedish Academy of Sciences said that the three scientists have "revived" the topological field research in chemistry, and "the smallest machines in the world" can be used to develop new materials, sensors and energy storage systems.

Keywords: molecular machines, mechanical connection, catenanes, rotaxanes, molecular Borromean rings.

Language of article: ukrainian

 

REFERENCES

  1. Kostyuk P.G., Zyma V.L., Magura I.S., Miroshnychenko M.S., Shuba M.F. Biophysics. (Kyiv, Taras Shevchenko National University of Kyiv, 2008).
     
  2. Shiroguchi K., Kinosita K. Jr. Myosin V walks by lever action and brownian motion. Science. 2007. 316(5828): 1208. https://doi.org/10.1126/science.1140468
     
  3. Karp G. Cell and Molecular Biology: Concepts and Experiments. (Hoboken, NJ: Wiley, 2005). Р. 346–358.
     
  4. Schroer T.A. Dynactin. Annual Review of Cell and Developmental Biology. 2004. 20:759. https://doi.org/10.1146/annurev.cellbio.20.012103.094623
     
  5. Stoddart J.F. The chemistry of the mechanical bond. Chem. Soc. Rev. 2009. 38: 1802.https://doi.org/10.1039/b819333a
     
  6. Browne W.R., Feringa B.L. Making molecular machines work. Nat. Nanotechnol. 2006. 1(1): 25.https://doi.org/10.1038/nnano.2006.45
     
  7. Cesario M., Dietrich-Buchecker C., Guilhem J., Pascard C., Sauvage J.-P. Molecular structure of a catenand and its copper(I) catenate: complete rearrangement of the interlocked macrocyclic ligands by complexation. J. Chem. Soc. Chem. Commun. 1985. (5): 244.https://doi.org/10.1039/c39850000244
     
  8. Frey J., Kraus T., Heitz V., Sauvage J.-P. A catenane consisting of a large ring threaded through both cyclic units of a handcuff-like compound. Chem. Commun.(Camb.). 2005. (42): 5310.https://doi.org/10.1039/b509745b
     
  9. Coskun A., Banaszak M., Astumian R.D., Stoddart J.F., Grzybowski B.A. Great expectations: can artificial molecular machines deliver on their promise? Chem. Soc. Rev. 2012. 41(1): 19.https://doi.org/10.1039/C1CS15262A
     
  10. Ashton P.R., Brown C.L., Chrystal E.J.T., Goodnow T.T., Kaifer A.E., Parry K.P., Philp D., Slawin A.M.Z., Spencer N., Stoddart J.F., Williams D.J. The self-assembly of a highly ordered [2]catenane. J. Chem. Soc. Chem. Commun. 1991. (9): 634.https://doi.org/10.1039/c39910000634
     
  11. Fletcher S.P., Dumur F., Pollard M.M., Feringa B.L. A reversible, unidirectional molecular rotary motor driven by chemical energy. Science. 2005. 310(5745): 80.https://doi.org/10.1126/science.1117090
     
  12. Schill G., Lüttringhaus A. Preparation of Catena Compounds by Directed Synthesis. Angew. Chem. 1964. 3: 546.https://doi.org/10.1002/anie.196405461
     
  13. Sauvage J.P. Transition metal-containing rotaxanes and catenanes in motion: toward molecular machines and motors. ChemInform. 1999. 30(4).https://doi.org/10.1002/chin.199904221
     
  14. Dietrich-Buchecker C.O., Sauvage J.-P. A synthetic molecular trefoil knot. Angew. Chem. 1989. 28(2): 189.https://doi.org/10.1002/anie.198901891
     
  15. Stoddart J.F., Bruns C.J. The Nature of the Mechanical Bond: From Molecules to Machines. (Wiley, 2016).

16   Richards V. Molecular Machines. Chemistry World. 16 February 2016. https://www.chemistryworld.com/feature/molecular-machines/9457.article.

17   Fletcher S.P., Dumur F., Pollard M.M., Feringa B.L. A reversible, unidirectional molecular rotary motor driven by chemical energy. Science. 2005. 310(5745): 80.https://doi.org/10.1126/science.1117090

18   Feringa B.L., Koumura N., Zijlstra R.W.J., Van Delden R.A., Harada N. Light-driven monodirectional molecular rotor. Nature. 1999. 401(6749): 152.https://doi.org/10.1038/43646

19   Vicario J., Walko M., Meetsma A., Feringa B.L. Fine tuning of the rotary motion by structural modification in light-driven unidirectional molecular motors. J. Am. Chem. Soc. 2006. 128(15): 5127.https://doi.org/10.1021/ja058303m

20   Mao C., Sun W., Seeman N.C. Assembly of Borromean rings from DNA. Nature. 1997. 386: 137.https://doi.org/10.1038/386137b0

21   Chichak K.S., Cantrill S.J., Pease A.R., Chiu Sh.-H., Cave G.W.V., Atwood J.L., Stoddart J.F. Molecular Borromean Rings. Science. 2004. 304(5675): 1308.https://doi.org/10.1126/science.1096914

22   Carroll G.T., Pollard M.M., Van Delden R., Feringa B.L. Controlled rotary motion of light-driven molecular motors assembled on a gold film. Chem. Sci. 2010. (1): 97.https://doi.org/10.1039/c0sc00162g

23   Wang J., Feringa B.L. Dynamic control of chiral space in a catalytic asymmetric reaction using a molecular motor science. Science. 2011. 331(6023): 1429.https://doi.org/10.1126/science.1199844