Visn. Nac. Akad. Nauk Ukr .2015. (1): 33—38
https://doi.org/10.15407/visn2015.01.033

M.S. Shypshyna, N.S. Veselovsky
Bogomoletz Institute of Physiology of NAS of Ukraine, Kyiv

BRAIN NEURAL CIRCUITS INVOLVED IN MAMMALIAN NAVIGATION

Abstract:
The 2014 Nobel Prize in Physiology or Medicine was awarded to Dr. John M. O’Keefe, Dr. May-Britt Moser and Dr. Edvard I. Moser for their discoveries of the brain nerve cells responsible for navigation. The results of innovative researches of the 2014 laureates expanded our understanding of the implementation of mental functions in the brain, as well as provided insight into the mechanisms of processing complex cognitive functions and behavior in the brain.
Keywords: place cells, grid cells, Nobel Prize, J. O’Keefe, M.-B. Moser, E. Moser.

Language of article: ukrainian.

References:
 

  1. Press Release of the Nobel Assembly at Karolinska Institutet http://www.nobelprize.org/nobel_prizes/medicine/laureates/2014/press.html.
  2. Tolman E.C. Cognitive maps in rats and men. Psychol. Rev. 1948. 55: 189. http://doi.org/10.1037/h0061626
  3. Strumwasser F. Long-term recording from single neurons in brain of unrestrained mammals. Science. 1958. 127: 469. http://doi.org/10.1126/science.127.3296.469
  4. O’Keefe J., Dostrovsky J. The hippocampus as a spatial map. Preliminary evidence from unit activity in the freely-moving rat. Brain Res. 1971. 34: 171. http://doi.org/10.1016/0006-8993(71)90358-1
  5. O’Keefe J. Place units in the hippocampus of the freely moving rat. Exp. Neurology. 1976. 51: 78. http://doi.org/10.1016/0014-4886(76)90055-8
  6. O’Keefe J., Conway D.H. Hippocampal place units in the freely moving rat: why they fire where they fire. Exp. Brain Res. 1978. 31: 573. http://doi.org/10.1007/BF00239813
  7. O’Keefe J., Speakman A. Single unit activity in the rat hippocampus during a spatial memory task. Exp. Brain Res. 1987. 68: 1. http://doi.org/10.1007/BF00255230
  8. Lever C., Wills T., Cacucci F. et al. Long-term plasticity in hippocampal place-cell representation of environmental geometry. Nature. 2002. 416: 90. http://doi.org/10.1038/416090a
  9. Hafting T., Fyhn M., Molden S. et al. Microstructure of a spatial map in the entorhinal cortex. Nature. 2005. 436: 801. http://doi.org/10.1038/nature03721
  10. Solstad T., Boccara C.N., Kropff E., Moser M.B., Moser E.I.. Representation of geometric borders in the entorhinal cortex. Science. 2008. 322: 1865. http://doi.org/10.1126/science.1166466
  11. Solstad T., Moser E.I., Einevoll G.T. From grid cells to place cells: a mathematical model. Hippocampus. 2006. 16: 1026. http://doi.org/10.1002/hipo.20244
  12. Bonnevie T., Dunn B., Fyhn M., Hafting T., Derdikman D., Kubie J.L., Roudi Y., Moser E.I., Moser M.B. Grid cells require excitatory drive from the hippocampus. Nat. Neurosci. 2013. 16: 309. http://doi.org/10.1038/nn.3311
  13. Hafting T., Fyhn M., Bonnevie T., Moser M.B., Moser E.I. Hippocampus-independent phase precession in entorhinal grid cells. Nature. 2008. 453: 1248. http://doi.org/10.1038/nature06957
  14. Fyhn M., Hafting T., Treves A., Moser M.B., Moser E.I.  Hippocampal remapping and grid realignment in entorhinal cortex. Nature. 2007. 446: 190. http://doi.org/10.1038/nature05601
  15. Brandon M.P., Bogaard A.R., Libby C.P., Connerney M.A., Gupta K., Hasselmo M.E. Reduction of theta rhythm dissociates grid cell spatial periodicity from directional tuning.  Science. 2011. 332: 595. http://doi.org/10.1126/science.1201652
  16. Bush D., Barry C., Burgess N. What do grid cells contribute to place cell firing? Trends in Neuroscience. 2014. 37(3): 136. http://doi.org/10.1016/j.tins.2013.12.003
  17. Bjerknes T.L., Moser E.I., Moser M.B. Representation of geometric borders in the developing rat. Neuron. 2014. 82(1): 71. http://doi.org/10.1016/j.neuron.2014.02.014
  18. Killian N.J., Jutras M.J., Buffalo E.A. A map of visual space in the primate entorhinal cortex. Nature. 2012. 491: 761. http://doi.org/10.1038/nature11587
  19. Ulanovsky N., Moss C.F. Hippocampal cellular and network  activity in freely moving echolocating bats. Nat. Neurosci. 2007. 10: 224. http://doi.org/10.1038/nn1829
  20. Yartsev M.M., Witter M.P., Ulanovsky N. Grid cells without theta oscillations in the entorhinal cortex of bats. Nature. 2011. 479: 103. http://doi.org/10.1038/nature10583
  21. Yartsev M.M., Ulanovsky N. Representation of three-dimensional space in the hippocampus of flying bats. Science. 2013. 340: 367. http://doi.org/10.1126/science.1235338
  22. Ekstrom A.D., Kahana M.J., Caplan J.B., Fields T.A., Isham E.A., Newman E.L., Fried I. Cellular networks underlying human spatial navigation. Nature. 2003. 425: 184. http://doi.org/10.1038/nature01964
  23. Jacobs J., Kahana M.J., Ekstrom A.D. A sense of direction in human entorhinal cortex.  PNAS. 2010. 107: 6487. http://doi.org/10.1073/pnas.0911213107
  24. Jacobs J., Weidemann C.T., Miller J.F., Solway A., Burke J.F., Wei X.X., Suthana N., Sperling M.R., Sharan A.D., Fried I., Kahana M.J. Direct recordings of grid-like neuronal activity in human spatial navigation. Nat. Neurosci. 2013. 6: 1188. http://doi.org/10.1038/nn.3466