Visn. Nac. Akad. Nauk Ukr. 2017. (11): 9-29
https://doi.org/10.15407/visn2017.11.009

A.B. Klimchouk
Institute of Geological Sciences of the National Academy of Sciences of Ukraine, Kyiv
http://orcid.org/0000-0001-5230-8814

THE DEVELOPMENT OF THE THEORY OF HYPOGENE KARST GENESIS: SCIENTIFIC AND PRACTICAL IMPLICATIONS
According to the materials of scientific report at the meeting of the Presidium of NAS of Ukraine, September 27, 2017

The development of karst (the formation of macro-porosity and abnormally high permeability of rocks under the action of dissolution by groundwater) affects different areas of human activity. Karstification has traditionally been associated with the impact of the infiltration of meteoric waters on easily soluble rocks that are exposed to the surface or lie at shallow depth. Karst features documented at great depths were regarded as paleokarst, formed in the previous epoch of the exposure and then buried beneath younger sediments.

The theory of hypogene (deep) karstification reveals the regularities of development and distribution of karst, which is associated with the ascending discharges of confined groundwater and endogenous fluids. Developing along structural and lithological heterogeneities in a wide range of reactive rocks, hypogene karstification creates a system of channels of effective fluid migration and macro-porosity in the upper crust, both in continental and oceanic conditions, and plays an important role in the organization of ascending fluid flow, processes of mass transfer and the formation of many deposits of fluid-induced ores and hydrocarbons.

The development of the theory of hypogene karstification, the revealing of its global distribution and the demonstration of its fundamental significance have caused a shift in the general paradigm of karst research and a revision of the notions about the nature of this phenomenon in many regions of the world. The hypogene karst theory has formed a new basis for assessing the role of karst in the exploration and exploitation of hydrocarbon deposits (including non-conventional hydocarbons) and fluid-induced ores, the geological sequestration of radioactive and toxic wastes and CO2, solving geological engineering problems of karst regions, exploration and use of geothermal resources and resources of deep groundwater.
Keywords: karst, hypogene karst, karst hydrogeology, karst geomorphology, karst hazards, hydrocarbon karst reservoirs, karst ore deposits.

Language of article: ukrainian

 

REFERENCES

  1. Ford D.C., Williams P.W. Karst Geomorphology and Hydrology. (London: Unwin Hyman, 1989).
  2. Palmer A.N. Origin and morphology of limestone caves. Geological Society of America Bulletin. 1991. 103(1): 1.
  3. Dreybrodt W., Gabrovsek F., Romanov D. Processes of Speleogenesis: A Modeling Approach. (Postojna, Ljubljana: Karst Research Institute at ZRC SAZU, 2005).
  4. Dublyansky Y.V. Regularities of the Development and Modeling of Hydrothermal Karst. (Novosibirsk: Nauka, 1990).
  5. Klimchouk A. Speleogenesis under deep-seated and confined settings. In: Klimchouk A., Ford D., Palmer A., Dreybrodt W. (eds.). Speleogenesis: Evolution of Karst Aquifers. (Huntsville: National Speleological Society, 2000). P. 244−260.
  6. Klimchouk A. Hypogene Speleogenesis: Hydrogeological and Morphogenetic Perspective. (Carlsbad: National Cave and Karst Research Institute, 2007).
  7. Klimchouk A. Speleogenesis, Hypogenic. In: Culver D.C., White W.B. (eds.). Encyclopedia of Caves. 2nd edition (Chennai: Elsevier, Academic Press, 2012). P. 748−765.
  8. Shestopalov V.M. (ed.). Water Exchange in Hydrogeological Structures of Ukraine. Water Exchange Under Natural Conditions. (Kyiv: Naukova Dumka, 1989).
  9. Shestopalov V.M. On hydrodynamic zoning and water exchange in hydrogeologic structures. Geological Journal. 2014. (4): 9.
  10. Kropotkin P.N. Degassing of Earth and the origin of hydrocarbons. Zhurnal Vsesojuznogo Khimicheskogo Obshchestva. 1986. 31(5): 481.
  11. Lukin A.E. Fluid-induced lithogenesis—the most important direction of lithological research in XXI century. Geological Journal. 2014. (4): 27.
  12. Lukin A.E. The system "superplume—deep-seated segments of petroliferous basins”— an inexhaustible source of hydrocarbons. Geological Journal. 2015. (2) :7.
  13. Lukin A.E. The Earth outgasing, naphtidogenesis and petroleum potential. Аrticle 1. Zbirnyk naukovuh prats UkrDGRI. 2016. (3): 98.
  14. Klimchouk A.B. Artesian genesis of the large maze caves in the Miocene gypsum of the Western Ukraine. Doklady Akademii Nauk Ukrainskoj SSR, seriya B. 1990. (7): 28.
  15. Klimchouk A.B. Large gypsum caves in the Western Ukraine and their genesis. Cave Science. 1992. 19(1): 3.
  16. Klimchouk A.B. Speleogenesis of great gypsum mazes in the Western Ukraine. In: Klimchouk A., Ford D., Palmer A., Dreybrodt W. (eds.). Speleogenesis: Evolution of Karst Aquifers. (Huntsville: National Speleological Society, 2000). P. 261–273.
  17. Shestopalov V.M. Natural Resources of Underground Water of Platform Artesian Basins of Ukraine. (Kуiv: Naukova Dumka, 1981).
  18. Klimchouk A.B. Speleogenesis under deep-seated and confined settings. In: Klimchouk A., Ford D., Palmer A., Dreybrodt W. (eds.). Speleogenesis: Evolution of Karst Aquifers. (Huntsville: National Speleological Society, 2000). P. 244–260.
  19. Klimchouk A.B. Conceptualisation of speleogenesis in multistorey artesian systems: a model of transverse speleogenesis. Speleogenesis and Evolution of Karst Aquifers. 2005. 34(2): 45.
  20. Klimchouk A.B. Karst formation in artesian conditions: the concept of transverse speleogenesis. Geological Journal. 2006. (2-3): 181.
  21. Klimchouk A.B., Pronin K.K., Timokhina E.I. Speleogenesis in the Pontian limestones of Odessa. Speleology and Karstology. 2010. (5): 76.
  22. Elliott W.R. The Caves and Karst of Texas. In: Elliott W.R., Veni G. (eds.). 1994 NSS Convention Guidebook. (Huntsville: National Speleological Society, 1994).
  23. Klimchouk A., Birk S. Speleogenesis in cratonic multi-storey artesian systems: conceptual and numerical models. In: EGU General Assembly 2006: Geophysical Research Abstracts. 2006. 8. Paper EGU06-A-05888.
  24. Rehrl C., Birk S., Klimchouk A.B. Conduit evolution in deep-seated settings: Conceptual and numerical models based on field observations. Water Resour. Res. 2008. 44: W11425.
  25. Rehrl C., Birk S., Klimchouk A.B. Influence of initial aperture variability on conduit development in hypogene settings. Zeitschrift fur Geomorphologie. 2010. 54(2): 237.
  26. Djunin V.I. Hydrogeodynamics of Deep Horizons of Oil- and Gas-bearing Basins. (Moscow: Nаuchnyi Mir, 2000).
  27. Chaudhuri A., Rajaram H., Wiswanathan H. Early-stage hypogene karstification in a mountain hydrologic system: A coupled thermohydrochemical model incorporating buoyant convection. Water Resour. Res. 2013. 49: 5880.
  28. Klimchouk A., Palmer A.N., De Waele J.,Auler A.S., Audra P. (eds.). Hypogene Karst Regions and Caves of the World. (Springer, 2017).
  29. Belenitskaya G.A. “Fluid” branch of lithology: state of the art, objects, and challenges. Uchenyye Zapiski Kazanskogo Universiteta. 2011. 153(4): 97.
  30. Palmer A.N. Geochemical models for the origin of macroscopic solution porosity in carbonate rocks. In: Budd A.D., Saller A.H., Harris P.M. (eds.). Unconformities and Porosity in Carbonate Strata. AAPG Memoir 63 (Tulsa, Oklahoma: AAPG, 1995). P. 77−101.
  31. Klimchouk A.B. Hypogene Speleogenesis, Its Hydrogeological Significance and the Role in Evolution of Karst. (Simferopol: DIP, 2013).
  32. Klimchouk A. Types and settings of hypogene karst. In: Klimchouk A., Palmer A.N., De Waele J., Auler A.S., Audra P. (eds.). Hypogene Karst Regions and Caves of the World. (Cham: Springer International Publishing AG, 2017). P. 1-39.
  33. Klimchouk A., Andreychouk V. Gypsum karst in the southwest outskirts of the Eastern European Platform (Western Ukraine): A type region of artesian transverse speleogenesis. In: Klimchouk A., Palmer A.N., De Waele J., Auler A.S., Audra P. (eds.). Hypogene Karst Regions and Caves of the World. (Cham: Springer International Publishing AG, 2017). P. 363-385.
  34. Dublyansky V.N., Smol’nikov B.M. Karstological and Geophysical Investigations of Karst Cavities of the Pridnestrovskaya Podolia and Pokutye (Kiev: Naukova Dumka, 1969).
  35. Jakucs L., Mezosi G. Genetic peculiarities of the gypsum caves of Podolia. Geomorphologia. 1997. (1): 91.
  36. Auler A.S. Styles of hypogene cave development in ancient carbonate areas overlying non-permeable rocks in Brazil and the influence of competing mechanisms and later modifying processes. In: Klimchouk A.B., Ford D.C. (eds.). Hypogene Speleogenesis and Karst Hydrogeology of Artesian Basins. (Simferopol: Ukrainian Institute of Speleology and Karstology, 2009). Р. 173-181.
  37. Hranicky kras Caving group (http://hranickapropast.cz/mapy/ostatni-mapy/)
  38. Caramanna G. Le porte dell’acqua. Speleologia. 2002. 46: 32.
  39. Kempe S. Gypsum karst of Germany. In: Klimchouk A., Lowe D., Cooper A., Sauro U. (eds.). Gypsum Karst of the World. International Journal of Speleology Theme Issue. 1996. 25(3-4): 209.
  40. Sebev D.G. Giant cavity in the bowls of Rhodopes. Rodopsky Peshchernyak. 1970. 50.
  41. Sun Q, Cartwright J, Wu S, Chen D. 3D seismic interpretation of dissolution pipes in the South China Sea: Genesis by subsurface, fluid induced collapse. Marine Geology. 2013. 337: 171.
  42. Stafford K.W., Land L., Klimchouk A., Gary M. The Pecos River hypogene speleogenetic province: a basin-scale karst paradigm for Eastern New Mexico and West Texas, USA. In: Stafford K.W., Land L., Veni G. (eds.). Advances in Hypogene Karst Studies: NCKRI Symposium 1. (Carlsbad: NCKRI, 2009). P. 121–135.
  43. Sutphin H.B., Wenrich K.J. Map of Locations of Collapse-Breccia Pipes in the Grand Canyon Region of Arizona. U.S. Geological Survey Open-File Report 89-0550. (Denver: USGS, 1989).
  44. Xiang S., Liao R., Lu D., Li Y. Karst collapses in northern China. In: Karst and karst water in north China. (Guangxi: Guangxi Normal University Press, 1993). Р. 163-173.
  45. Betzler C., Lindhorst S., Hübscher C., Lüdmann T. Giant pockmarks in a carbonate platform (Maldives, Indian Ocean). Marine Geology. 2011. 289: 1.
  46. Klimchouk A B. Morphogenesis of hypogenic caves. Geomorphology. 2009. 106: 100.
  47. Klimchouk A B., Timokhina E.I., Amelichev G.N., Dublyansky V.N., Shtaubwasser M. The age of the relief of the Inner Range of the Mountainous Crimea according to U/Th dating of calcite deposits of karst cavities. Dopov. Nac. Akad. Nauk Ukr. 2012. (7): 88.
  48. Dublyansky Y.V., Klimchouk A.B., Spoetl C., Tymokhina E., Amelichev G. Isotope wallrock alteration associated with hypogene karst of the Crimean Piedmont, Ukraine. Chemical Geology 2014. 377: 31.
  49. Klimchouk A B., Timokhina E.I., Amelichev G.N., Dublyansky V.N., Spoetl C. Hypogene Karst of the Crimean Piedmont and its Geomorphological Role. (Simferopоl, 2013).
  50. Klimchouk A. The karst paradigm: changes, trends and perspectives. Acta Carsologica. 2015. 44(3): 289.
  51. Klimchouk A.B. The evolutionary approach to karst typology. Geological Journal. 2010. (3): 85.
  52. Blackwood K.W., Sanders L.A., Gantt-Blackwood S.I. The role of hypogene speleogenesis in the evolution and function of geysers and other geothermal features in Yellowstone National Park. 2016 GSA Annual Scientific Meeting Abstracts. Paper No. 99-12. Denver, Colorado: GSA, 2016. https://gsa.confex.com/gsa/2016AM/webprogram/Paper282094.html
  53. Goldscheider N., Madl-Szonyi J., Eross A., Schill E. Review: Thermal water resources in carbonate rock aquifers. Hydrogeology Journal. 2010. 18(6): 1303.