Visn. Nac. Akad. Nauk Ukr. 2017. (8):16-28

N.G. Shchukina
Main Astronomical Observatory of the National Academy of Sciences of Ukraine, Kyiv

According to the materials of scientific report at the meeting of the Presidium of NAS of Ukraine, May 31, 2017

The observational program of monitoring of long-term variation of solar lines is described. The aim of the program is to study how the physical parameters of the quiet solar atmosphere have changed over the last 11-year solar cycles. The research is based on high spectral resolution observations of the quiet Sun using the horizontal solar telescope ATSU-5 of the Main Astronomical Observatory of the National Academy of Sciences of Ukraine. The diagnostics of the solar cycle atmospheric variation is based on observations since 2012 of almost 40 spectral lines of neutral and ionized chemical elements at the solar disk centre and limb near north and south poles. The results of the observations show that the line core depth and full width at half maximum of the many solar spectral lines show response to the cycle modulation of the total unsigned magnetic field of the Sun. The behaviour of these line parameters can be explained by variations of the temperature and convective motions of the quiet photosphere with 11-year cycle of solar activity.
Keywords: Sun, telescopes, instrumentation for observations, spectral lines, solar magnetic field, 11-year cycle of solar activity.

Language of article: ukrainian



  1. Abdussamatov H.I. The Sun Dictates the Climate of the Earth. (St. Petersburg: Logos, 2009).
  2. Shapiro A.I., Schmutz W., Rozanov E., Schoell M., Haberreiter M., Shapiro A.V., Nyeki S. A new approach to the long-term reconstruction of the solar irradiance leads to large historical solar forcing. Astron. Astrophys. 2011. 529: A67.
  3. Atroshchenko I.N. et al. Variations in the global characteristics of the Sun. (Kyiv: Naukova Dumka, 1991).
  4. Cavallini F., Cepatelli G., Righini A. Long-term width and asymmetry variation of some Fe I photospheric lines in solar quiet regions at the disk center Astron. Astrophys. 1986. 158: 275.
  5. Krat V.A., Kokhan E.K. Results of an 11-year program for the study of Fraunhofer line profiles. Motions in the solar atmosphere. Transactions of the Main Astronomical Observatory at Pulkovo. 1984. 202: 49.
  6. Doyle J.G., Jevremović D., Short C.I., Hauschildt P.H., Livingston W., Vince I. Solar Mn I 5432/5395 Å line formation explained. Astron. Astrophys. 2001. 369: L13.
  7. Livingston W., Holweger H. Solar luminosity variation. IV. The photospheric lines, 1976−1980. Astrophys. J. 1982. 252: 375.
  8. Livingston W., Wallace L., White O.R., Giampapa M.S. Sun-as-a-Star Spectrum Variations 1974−2006. Astrophys. J. 2007. 657: 1137.
  9. Livingston W., White O.R., Wallace L., Harvey J. Sun-as-a-Star, Chromospheric Lines, 1974−2009. Mem. Soc. Astron. Italiana. 2010. 81: 643.
  10. Keller C.U., Harvey J.W., Giampapa M.S. SOLIS: an innovative suite of synoptic instruments. Proc. SPIE. Innovative Telescopes and Instrumentation for Solar Astrophysics. (eds. S.L. Keil, S.V. Avakyan). 2003. 4853: 194.
  12. Gurtovenko E.A., Kostik R.I. Fraunhofer Spectrum and the System of Solar Oscillator Strengths. (Kyiv: Naukova Dumka, 1989).
  13. Kostik R.I., Shchukina N.G., The Instrumentation of the Main Astronomical Observatory of the National Academy of Sciences of Ukraine. Advances in Physics of Sunspots. (eds. B. Schmieder, J.C. del Toro Iniesta, M. Vazquéz). ASP Conf. Ser. 1997. 118: 372.
  14. Osipov S.N. Instrumental profile of the spectrograph of the ATsU-5 solar telescope of the Main Astronomical Observatory of the National Academy of Sciences of Ukraine. Kinemat. Phys. Celest. Bodies. 2015. 31(5): 261.
  15. Gurtovenko E.A., Kostik R.I. On the establishment of internally consistent solar scales of oscillator strengths and abundances of chemical elements. III. Oscillator strengths obtained from equivalent widths of 360 Fe I lines. Astron. Astrophys. Suppl. Ser. 1982. 47: 193.
  16. Gurtovenko E.A., Kostik R.I. On the establishment of internally consistent solar scales of oscillator strengths and abundances of chemical elements. I. Oscillator strengths for 865 Fe I lines. Astron. Astrophys. Suppl. Ser. 1981. 46: 239.
  17. Burlov-Vasiljev K.A., Matvejev Yu.B., Vasiljeva I.E. New Measurements of the Solar Disk-Center Spectral Intensity in the Near IR from 645 nm to 1070 nm. Solar Phys. 1998. 177: 25.
  18. Burlov-Vasiljev K.A., Gurtovenko E.A., Matvejev Yu.B. New absolute measurements of the solar spectrum. Solar Phys. 1995. 157: 51.
  19. Lebedev N.I., Oraevsky V.N., Zhugzhda Y.D., Kopaev I.M., Kostyk R.I., Pflug K., Ruediger G., Staude J., Bettac H.D. First results of the CORONAS-DIFOS experiment. Space observations of solar irradiance oscillations. Astron. Astrophys. 1995. 296: L25.
  20. Gurtovenko E.A., Kesel’man I.G., Kostyk R.I., Osipov S.N., Lebedev N.I. et al. Photometer “DIFOS” for the study of solar brightness variations. Solar Phys. 1994. 152: 43.
  21. Kostik R., Khomenko E. The possible origin of facular brightness in the solar atmosphere. Astron. Astrophys. 2016. 589: A6.
  22. Kostik R., Khomenko E., Shchukina N. Solar granulation from photosphere to low chromosphere observed in Ba II 4554 Å line. Astron. Astrophys. 2009. 506: 1405.
  23. Khomenko E.V., Kostik R.I., Shchukina N.G. Five-minute oscillations above granules and intergranular lanes. Astron. Astrophys. 2001. 369: 660.
  24. Kostyk R.I. Fine Structure of Fraunhofer lines and the structure of the solar atmosphere. Soviet Astronomy. 1985. 29: 65.
  25. Rutten R.J., Kostik R.I. Empirical NLTE analyses of solar spectral lines. III. Iron lines versus LTE models of the photosphere. Astron. Astrophys. 1982. 115: 104.
  26. Kostik R.I. Damping constant and turbulence in the solar atmosphere. Solar Phys. 1982. 78: 39.
  27. Gurtovenko E.A. The total photospheric motion field. Solar Phys. 1975. 45: 25.
  28. Kondrashova N.N. Spectropolarimetric investigation of the photosphere during a solar microflare. Mon. Not. Roy. Astron. Soc. 2013. 431: 1417.
  29. Shchukina N.G., Kondrashova N.N., Khomenko E.V., Kostyk R.I., Chornogor S.N., Alikaeva K.V., Olshevsky V.L., Osipov S.N., Andrienko A.V. Dynamical models of photospheric and chromospheric layers of solar flares for study of flare origin and evolution. Space Science and Technology. 2008. 14(6): 52.
  30. Shchukina N., Trujillo Bueno J. Determining the Magnetization of the Quiet Sun Photosphere from the Hanle Effect and Surface Dynamo Simulations. Astrophys. J. Lett. 2011. 731: L21.
  31. Trujillo Bueno J., Shchukina N., Asensio Ramos A.A substantial amount of hidden magnetic energy in the quiet Sun. Nature. 2004. 430(6997): 326.
  32. Shchukina N., Sukhorukov A., Trujillo Bueno J. Impact of surface dynamo magnetic fields on the solar abundance of the CNO elements. Astron. Astrophys. 2016. 586: A145.
  33. Shchukina N., Sukhorukov A., Trujillo Bueno J. Non-LTE Determination of the Silicon Abundance Using a Three-dimensional Hydrodynamical Model of the Solar Photosphere. Astrophys. J. 2012. 755: 176.
  34. Shchukina N.G., Trujillo Bueno J., Asplund M. The Impact of Non-LTE Effects and Granulation Inhomogeneities on the Derived Iron and Oxygen Abundances in Metal-Poor Halo Stars. Astrophys. J. 2005. 618: 939.
  35. Shchukina N., Trujillo Bueno J. The Iron Line Formation Problem in Three-dimensional Hydrodynamic Models of Solar-like Photospheres. Astrophys. J. 2001. 550: 970.
  36. Israelian G., Rebolo R., García López R. J., Bonifacio P., Molaro P., Basri G., Shchukina N. Oxygen in the Very Early Galaxy. Astrophys. J. 2001. 551: 833.
  37. Kostik R.I., Shchukina N.G., Rutten R.J. The solar iron abundance: not the last word. Astron. Astrophys. 1996. 305: 325.
  38. Carlsson M., Rutten R.J., Bruls J.H.M.J., Shchukina N.G. The non-LTE formation of Li I lines in cool stars. Astron. Astrophys. 1994. 288: 860.
  39. Bruls J.H.M.J., Rutten R.J., Shchukina N.G. The formation of helioseismology lines. I. NLTE effects in alkali spectra. Astron. Astrophys. 1992. 265: 237.
  40. Carlsson M., Rutten R.J., Shchukina N.G. The formation of the Mg I emission features near 12 microns. Astron. Astrophys. 1992. 253: 567.
  41. Trujillo Bueno J., Shchukina N. Three-dimensional Radiative Transfer Modelling of the Polarization of the Sun’s Continuous Spectrum. Astrophys. J. 2009. 694: 1364.