Visn. Nac. Akad. Nauk Ukr. 2016. (12): 48-62
https://doi.org/10.15407/visn2016.12.048

A.A. Sibirny
Institute of Cell Biology of National Academy of Sciences of Ukraine, Lviv

MECHANISMS OF AUTOPHAGY OR SELF-EATING, PERMANENT DEGRADATION OF CELL MATERIAL THAT IS INDISPENSABLE TO LIFE
Nobel Prize in Physiology and Medicine for 2016

Nobel Prize in Physiology and Medicine in 2016 was awarded to the Honorary Professor of Tokyo Institute of Technology Yoshinori Ohsumi for discovery of the mechanisms of autophagy. He elucidated the main steps of this process and identified genes involved in these particulate steps. The environmental stimuli which regulate autophagy were identified. In addition to general (non-specific) autophagy, selective processes involved in degradation of endoplasmic reticulum, ribosomes and some organelles (mitochondria, peroxisomes, lipid droplets, nuclei) have been found. The laboratory of the author of present review discovered several genes involved in autophagic peroxisome degradation (pexophagy). The review also describes potential utilization of autophagy in medicine and biotechnology.

Keywords: autophagy, pexophagy, Atg proteins, non-specific (general) and selective types of autophagy, Nobel Prize, Y. Ohsumi.

Language of article: ukrainian

REFERENCES

  1. Ciechanover A. Proteolysis: from the lysosome to ubiquitin and the proteasome. Nat. Rev. Mol. Cell Biol. 2005. 6(1): 79.https://doi.org/10.1038/nrm1552
  2. Chen D., Frezza M., Schmitt S., Kanwar J., Dou Q.P. Bortezomib as the first proteasome inhibitor anticancer drug: current status and future perspectives. Curr. Cancer Drug Targets. 2011. 11(3): 239.https://doi.org/10.2174/156800911794519752
  3. Accardi F., Toscani D., Bolzoni M., Dalla Palma B., Aversa F., Giuliani N. Mechanism of Action of Bortezomib and the New Proteasome Inhibitors on Myeloma Cells and the Bone Microenvironment: Impact on Myeloma-Induced Alterations of Bone Remodeling. Biomed. Res. Int. 2015. 2015:172458.
  4. Tsukada M., Ohsumi Y. Isolation and characterization of autophagy-defective mutants of Saccharomyces cerevisiae. FEBS Lett. 1993. 333(1–2): 169.https://doi.org/10.1016/0014-5793(93)80398-E
  5. Thumm M., Egner R., Koch B., Schlumpberger M., Straub M., Veenhuis M., Wolf D.H. Isolation of autophagocytosis mutants of Saccharomyces cerevisiae. FEBS Lett. 1994. 349(2): 275.https://doi.org/10.1016/0014-5793(94)00672-5
  6. Titorenko V.I., Keizer I., Harder W., Veenhuis M. Isolation and characterization of mutants impaired in the selective degradation of peroxisomes in the yeast Hansenula polymorpha. J. Bacteriol. 1995. 177(2): 357.https://doi.org/10.1128/jb.177.2.357-363.1995
  7. Kulachkovsky A.R., Moroz O.M., Sibirny A.A. Impairment of peroxisome degradation in Pichia methanolica mutants defective in acetyl-CoA synthetase or isocitrate lyase. Yeast. 1997. 13(11): 1043.https://doi.org/10.1002/(SICI)1097-0061(19970915)13:11<1043::AID-YEA161>3.0.CO;2-E
  8. Klionsky D.J., Cregg J.M., Dunn W.A. Jr., Emr S.D., Sakai Y., Sandoval I.V., Sibirny A., Subramani S., Thumm M., Veenhuis M., Ohsumi Y. A unified nomenclature for yeast autophagy-related genes. Dev. Cell. 2003. 5(4): 539.https://doi.org/10.1016/S1534-5807(03)00296-X
  9. Klionsky D.J., Cueva R., Yaver D.S. Aminopeptidase I of Saccharomyces cerevisiae is localized to the vacuole independent of the secretory pathway. J. Cell Biol. 1992. 119(2): 287.https://doi.org/10.1083/jcb.119.2.287
  10. Takeshige K., Baba M., Tsuboi S., Noda T., Ohsumi Y. Autophagy in yeast demonstrated with proteinase-deficient mutants and conditions for its induction. J. Cell Biol. 1992. 119(2): 301.https://doi.org/10.1083/jcb.119.2.301
  11. Qu X., Zou Z., Sun Q., Luby-Phelps K., Cheng P., Hogan R.N., Gilpin C., Levine B. Autophagy gene-dependent clearance of apoptotic cells during embryonic development. Cell. 2007. 128(5): 931.https://doi.org/10.1016/j.cell.2006.12.044
  12. Mathew R., Karantza-Wadsworth V., White E. Role of autophagy in cancer. Nat. Rev. Cancer. 2007. 7(12): 961.https://doi.org/10.1038/nrc2254
  13. Sibirny A.A. Mechanisms of autophagy and pexophagy in yeasts. Biochemistry. 2011. 76: 1279.https://doi.org/10.1134/s0006297911120017
  14. Bassham D.C., Laporte M., Marty F., Moriyasu Y., Ohsumi Y., Olsen L.J., Yoshimoto K. Autophagy in development and stress responses of plants. Autophagy. 2006. 2(1): 2.https://doi.org/10.4161/auto.2092
  15. Kang C., You Y.J., Avery L. Dual roles of autophagy in the survival of Caenorhabditis elegans during starvation. Genes Dev. 2007. 21(17): 2161.https://doi.org/10.1101/gad.1573107
  16. Levine B., Kroemer G. Autophagy in the pathogenesis of disease. Cell. 2008. 132(1): 27.https://doi.org/10.1016/j.cell.2007.12.018
  17. Kiel J.A. Autophagy in unicellular eukaryotes. Philos. Trans. R. Soc. B. 2010. 365: 819.https://doi.org/10.1098/rstb.2009.0237
  18. Manjithaya R., Nazarko T.Y., Farre J.C., Subramani S. Molecular mechanism and physiological role of pexophagy. FEBS Lett. 2010. 584(7): 1367.https://doi.org/10.1016/j.febslet.2010.01.019
  19. Sibirny A.A. Pexophagy sensing and signaling in the methylotrophic yeasts. In: Brocard C., Hartig A. (eds). Molecular Machines Involved in Peroxisome Biogenesis and Maintenance. (Berlin: Springer, 2014). P. 507–527.https://doi.org/10.1007/978-3-7091-1788-0_23
  20. Till A., Lakhani R., Burnett S.F., Subramani S. Pexophagy: the selective degradation of peroxisomes. Int. J. Cell Biol. 2012. 2012: 1.
  21. Suzuki K., Akioka M., Kondo-Kakuta C., Yamamoto H., Ohsumi Y. Fine mapping of autophagy-related proteins during autophagosome formation in Saccharomyces cerevisiae. J. Cell Sci. 2013. 126(11): 2534.https://doi.org/10.1242/jcs.122960
  22. Suzuki K., Nakamura S., Morimoto M., Fujii K., Noda N.N., Inagaki F., Ohsumi Y. Proteomic profiling of autophagosome cargo in Saccharomyces cerevisiae. PLoS One. 2014. 9(3): e91651.https://doi.org/10.1371/journal.pone.0091651
  23. Oku M., Sakai Y. Pexophagy in yeasts. Biochim. Biophys. Acta. 2016. 1863(5): 992.https://doi.org/10.1016/j.bbamcr.2015.09.023
  24. Aksam E.B., Koek A., Kiel J.A., Jourdan S., Veenhuis M., van der Klei I.J. A peroxisomal lon protease and peroxisome degradation by autophagy play key roles in vitality of Hansenula polymorpha cells. Autophagy. 2007. 3(2): 96.https://doi.org/10.4161/auto.3534
  25. Schmelzle T., Hall M.N. TOR, a central controller of cell growth. Cell. 2000. 103(2): 253.https://doi.org/10.1016/S0092-8674(00)00117-3
  26. Cebollero E., Reggiori F. Regulation of autophagy in yeast Saccharomyces cerevisiae. Biochim. Biophys. Acta. 2009. 1793(9): 1413.https://doi.org/10.1016/j.bbamcr.2009.01.008
  27. Kabeya Y., Kamada Y., Baba M., Takikawa H., Sasaki M., Ohsumi Y. Atg17 functions in cooperation with Atg1 and Atg13 in yeast autophagy. Mol. Biol. Cell. 2005. 16(5): 2544.https://doi.org/10.1091/mbc.E04-08-0669
  28. Suzuki K., Kamada Y., Ohsumi Y. Studies of cargo delivery to the vacuole mediated by autophagosomes in Saccharomyces cerevisiae. Dev. Cell. 2002. 3(6): 815.https://doi.org/10.1016/S1534-5807(02)00359-3
  29. Kihara A., Noda T., Ishihara N., Ohsumi Y. Two distinct Vps34 phosphatidylinositol 3-kinase complexes function in autophagy and carboxypeptidase Y sorting in Saccharomyces cerevisiae. J. Cell Biol. 2001. 152(3): 519.https://doi.org/10.1083/jcb.152.3.519
  30. Ohsumi Y. Molecular dissection of autophagy: two ubiquitin-like systems. Nat. Rev. Mol. Cell Biol. 2001. 2(3): 211.https://doi.org/10.1038/35056522
  31. Hanada T., Noda N.N., Satomi Y., Ichimura Y., Fujioka Y., Takao T., Inagaki F., Ohsumi Y. The Atg12-Atg5 conjugate has a novel E3-like activity for protein lipidation in autophagy. J. Biol. Chem. 2007. 282(52): 37298.https://doi.org/10.1074/jbc.C700195200
  32. Reggiori F., Tucker K.A., Stromhaug P.E., Klionsky D.J. The Atg1-Atg13 complex regulates Atg9 and Atg23 retrieval transport from the pre-autophagosomal structure. Dev. Cell. 2004. 6(1): 79.https://doi.org/10.1016/S1534-5807(03)00402-7
  33. Wickner W. Membrane fusion: five lipids, four SNAREs, three chaperones, two nucleotides, and a Rab, all dancing in a ring on yeast vacuoles. Annu. Rev. Cell Dev. Biol. 2010. 26: 115.https://doi.org/10.1146/annurev-cellbio-100109-104131
  34. Epple U.D., Eskelinen E.L., Thumm M. Intravacuolar membrane lysis in Saccharomyces cerevisiae. Does vacuolar targeting of Cvt17/Aut5p affect its function? J. Biol. Chem. 2003. 278(10): 7810.https://doi.org/10.1074/jbc.M209309200
  35. Polupanov A.S., Nazarko V.Y., Sibirny A.A. CCZ1, MON1 and YPT7 genes are involved in pexophagy, the Cvt pathway and non-specific macroautophagy in the methylotrophic yeast Pichia pastoris. Cell Biol. Int. 2011. 35: 311.https://doi.org/10.1042/CBI20100547
  36. He C., Klionsky D.J. Regulation mechanisms and signaling pathways of autophagy. Annu. Rev. Genet. 2009. 43: 67.https://doi.org/10.1146/annurev-genet-102808-114910
  37. Kaushik S., Cuervo A.M. Chaperone-mediated autophagy: a unique way to enter the lysosome world. Trends Cell Biol. 2012. 22(8): 407.https://doi.org/10.1016/j.tcb.2012.05.006
  38. Noda T., Ohsumi Y. Tor, a phosphatidylinositol kinase homologue, controls autophagy in yeast. J. Biol. Chem. 1998. 273(7): 3963.https://doi.org/10.1074/jbc.273.7.3963
  39. Yorimitsu T., He C., Wang K., Klionsky D.J. Tap42-associated protein phosphatase type 2A negatively regulates induction of autophagy. Autophagy. 2009. 5(5): 616.https://doi.org/10.4161/auto.5.5.8091
  40. Schmelzle T., Beck T., Martin D.E., Hall M.N. Activation of the RAS/cyclic AMP pathway suppresses a TOR deficiency in yeast. Mol. Cell Biol. 2004. 24(1): 338.https://doi.org/10.1128/MCB.24.1.338-351.2004
  41. Yorimitsu T., Zaman S., Broach J.R., Klionsky D.J. Protein kinase A and Sch9 cooperatively regulate induction of autophagy in Saccharomyces cerevisiae. Mol. Biol. Cell. 2007. 18(10): 4180.https://doi.org/10.1091/mbc.E07-05-0485
  42. Mammucari C., Milan G., Romanello V., Masiero E., Rudolf R., Del Piccolo P., Burden S.J., Di Lisi R., Sandri C., Zhao J., Goldberg A.L., Schiaffino S., Sandri M. FoxO3 controls autophagy in skeletal muscle in vivo. Cell Metab. 2007. 6(6): 458.https://doi.org/10.1016/j.cmet.2007.11.001
  43. Natarajan K., Meyer M.R., Jackson B.M., Slade D., Roberts C., Hinnebusch A.G., Marton M.J. Transcriptional profling shows that Gcn4p is a master regulator of gene expression during amino acid starvation in yeast. Mol. Cell Biol. 2001. 21(13): 4347.https://doi.org/10.1128/MCB.21.13.4347-4368.2001
  44. Kraft C., Reggiori F., Peter M. Selective types of autophagy in yeast. Biochim. Biophys. Acta. 2009. 1793(9): 1404.https://doi.org/10.1016/j.bbamcr.2009.02.006
  45. Singh R., Cuervo A.M. Lipophagy: connecting autophagy and lipid metabolism. Int. J. Cell Biol. 2012. 2012: 282041.
  46. Rambold A.S., Lippincott-Schwartz J. Mechanisms of mitochondria and autophagy crosstalk. Cell Cycle. 2011. 10(23): 4032.https://doi.org/10.4161/cc.10.23.18384
  47. Tolkovsky A.M. Mitophagy. Biochim. Biophys. Acta. 2009. 1793(9): 1508.https://doi.org/10.1016/j.bbamcr.2009.03.002
  48. Kanki T., Klionsky D.J. Atg32 is a tag for mitochondria degradation in yeast. Autophagy. 2009. 5(8): 1201.https://doi.org/10.4161/auto.5.8.9747
  49. Hamasaki M., Noda T., Baba M., Ohsumi Y. Starvation triggers the delivery of the endoplasmic reticulum to the vacuole via autophagy in yeast. Traffic. 2005. 6(1): 56.https://doi.org/10.1111/j.1600-0854.2004.00245.x
  50. Kraft C., Deplazes A., Sohrmann M., Peter M. Mature ribosomes are selectively degraded upon starvation by an autophagy pathway requiring the Ubp3p/Bre5p ubiquitin protease. Nat. Cell Biol. 2008. 10(5): 602.https://doi.org/10.1038/ncb1723
  51. Baxter B.K., Abeliovich H., Zhang X., Stirling A.G., Burlingame A.L., Goldfarb D.S. Atg19p ubiquitination and the cytoplasm to vacuole trafficking pathway in yeast. J. Biol. Chem. 2005. 280(47): 39067.https://doi.org/10.1074/jbc.M508064200
  52. Maeda Y., Oku M., Sakai Y. A defect of the vacuolar putative lipase Atg15 accelerates degradation of lipid droplets through lipolysis. Autophagy. 2015. 11(8): 1247.https://doi.org/10.1080/15548627.2015.1056969
  53. Krick R., Muehe Y., Prick T., Bremer S., Schlotterhose P., Eskelinen E.L., Millen J., Goldfarb D., Thumm M. Piecemeal microautophagy of the nucleus requires the core macroautophagy genes. Mol. Biol. Cell. 2008. 19(10): 4492.https://doi.org/10.1091/mbc.E08-04-0363
  54. Roberts P., Moshitch-Moshkovitz S., Kvam E., O’Toole E., Winey M., Goldfarb D.S. Piecemeal microautophagy of nucleus in Saccharomyces cerevisiae. Mol. Biol. Cell. 2003. 14(1): 129.https://doi.org/10.1091/mbc.E02-08-0483
  55. Sibirny A.A. Yeast peroxisomes: structure, functions and biotechnological opportunities. FEMS Yeast Res. 2016. 16(4): fow038.https://doi.org/10.1093/femsyr/fow038
  56. Russmayer H. et al. Systems-level organization of yeast methylotrophic lifestyle. BMC Biol. 2015. 13: 80.https://doi.org/10.1186/s12915-015-0186-5
  57. Veenhuis M., Van Dijken J.P., Harder W. The significance of peroxisomes in the metabolism of one-carbon compounds in yeasts. Adv. Microb. Physiol. 1983. 24: 1.https://doi.org/10.1016/S0065-2911(08)60384-7
  58. Dunn W.A. Jr., Cregg J.M., Kiel J.A., van der Klei I.J., Oku M., Sakai Y., Sibirny A.A., Stasyk O.V., Veenhuis M. Pexophagy: the selective autophagy of peroxisomes. Autophagy. 2005. 1(2): 75.https://doi.org/10.4161/auto.1.2.1737
  59. Mukaiyama H., Baba M., Osumi M., Aoyagi S., Kato N., Ohsumi Y., Sakai Y. Modification of a ubiquitin-like protein Paz2 conducted micropexophagy through formation of a novel membrane structure. Mol. Biol. Cell. 2004. 15(1): 58.https://doi.org/10.1091/mbc.E03-05-0340
  60. Farre J.C., Manjithaya R., Mathewson R.D., Subramani S. PpAtg30 tags peroxisomes for turnover by selective autophagy. Dev. Cell. 2008. 14(3): 365.https://doi.org/10.1016/j.devcel.2007.12.011
  61. Nazarko T.Y., Farre J.C., Subramani S. Peroxisome size provides insights into the function of autophagy-related proteins. Mol. Biol. Cell. 2009. 20(17): 3828.https://doi.org/10.1091/mbc.E09-03-0221
  62. Stasyk O.V., Nazarko T.Y., Stasyk O.G., Krasovska O.S., Warnecke D., Nicaud J.M., Cregg J.M., Sibirny A.A. Sterol glucosyltransferases have different functional roles in Pichia pastoris and Yarrowia lipolytica. Cell Biol. Int. 2003. 27(11): 947.https://doi.org/10.1016/j.cellbi.2003.08.004
  63. Stasyk O.G., Maidan M.M., Stasyk O.V., Van Dijck P., Thevelein J.M., Sibirny A.A. Identification of hexose transporter-like sensor HXS1 and functional hexose transporter HXT1 in the methylotrophic yeast Hansenula polymorpha. Eukaryot. Cell. 2008. 7(4): 735.https://doi.org/10.1128/EC.00028-08
  64. Nazarko V.Y., Nazarko T.Y., Farre J.C., Stasyk O.V., Warnecke D., Ulaszewski S., Cregg J.M., Sibirny A.A., Subramani S. Atg35, a micropexophagy-specific protein that regulates micropexophagic apparatus formation in Pichia pastoris. Autophagy. 2011. 7(4): 375.https://doi.org/10.4161/auto.7.4.14369
  65. Ano Y., Hattori T., Oku M., Mukaiyama H., Baba M., Ohsumi Y., Kato N., Sakai Y. A sorting nexin PpAtg24 regulates vacuolar membrane dynamics during pexophagy via binding to phosphatidylinositol-3-phosphate. Mol. Biol. Cell. 2005. 16(2): 446.https://doi.org/10.1091/mbc.E04-09-0842
  66. Monastyrska I., Kiel J.A., Krikken A.M., Komduur J.A., Veenhuis M., van der Klei I.J. The Hansenula polymorpha ATG25 gene encodes a novel coiled-coil protein that is required for macropexophagy. Autophagy. 2005. 1(2): 92.https://doi.org/10.4161/auto.1.2.1832
  67. Sakai Y., Oku M., van der Klei I.J., Kiel J.A. Pexophagy: autophagic degradation of peroxisomes. Biochim. Biophys. Acta. 2006. 1763(12): 1767.https://doi.org/10.1016/j.bbamcr.2006.08.023
  68. Oku M., Warnecke D., Noda T., Müller F., Heinz E., Mukaiyama H., Kato N., Sakai Y. Peroxisome degradation requires catalytically active sterol glucosyltransferase with a GRAM domain. EMBO J. 2003. 22(13): 3231.https://doi.org/10.1093/emboj/cdg331
  69. Nazarko T.Y., Farre J.C., Polupanov A.S., Sibirny A.A., Subramani S. Autophagy-related pathways and specific role of sterol glucoside in yeasts. Autophagy. 2007. 3(3): 263.https://doi.org/10.4161/auto.3907
  70. Nazarko T.Y., Polupanov A.S., Manjithaya R.R. Subramani S., Sibirny A.A. The requirement of sterol glucoside for pexophagy in yeast is dependent of the species and nature of peroxisome inducers. Mol. Biol. Cell. 2007. 18(1): 106.https://doi.org/10.1091/mbc.E06-06-0554
  71. Yamashita S., Oku M., Wasada Y., Ano Y., Sakai Y. PI4P-signaling pathway for the synthesis of a nascent membrane structure in selective autophagy. J. Cell Biol. 2006. 173(5): 709.https://doi.org/10.1083/jcb.200512142
  72. Stasyk O.V., Stasyk O.G., Mathewson R.D., Farre J.C., Nazarko V.Y., Krasovska O.S., Subramani S., Cregg J.M., Sibirny A.A. Atg28, a novel coiled-coil protein involved in autophagic degradation of peroxisomes in the methylotrophic yeast Pichia pastoris. Autophagy. 2006. 2(1): 30.https://doi.org/10.4161/auto.2226
  73. Burnett S.F., Farre J.C., Nazarko T.Y., Subramani S. Peroxisomal Pex3 activates selective autophagy of peroxisomes via interaction with the pexophagy receptor Atg30. J. Biol. Chem. 2015. 290(13): 8623.https://doi.org/10.1074/jbc.M114.619338
  74. van Zutphen T., Veenhuis M., van der Klei I.J. Pex14 is the sole component of the peroxisomal translocon that is required for pexophagy. Autophagy. 2008. 4(1): 63.https://doi.org/10.4161/auto.5076
  75. Nazarko T.Y. Atg37 regulates the assembly of the pexophagic receptor protein complex. Autophagy. 2014. 10(7): 1348.https://doi.org/10.4161/auto.29073
  76. Leao-Helder A.N., Krikken A.M., van der Klei I.J., Kiel J.A., Veenhuis M. Transcriptional down-regulation of peroxisome numbers affects selective peroxisome degradation in Hansenula polymorpha. J. Biol. Chem. 2003. 278(42): 40749.https://doi.org/10.1074/jbc.M304029200
  77. Stasyk O.G., van Zutphen T., Ah Kang H., Stasyk O.V., Veenhuis M., Sibirny A.A. The role of Hansenula polymorpha MIG1 homologues in catabolite repression and pexophagy. FEMS Yeast Res. 2007. 7(7): 1103.https://doi.org/10.1111/j.1567-1364.2007.00286.x
  78. Nazarko V.Y., Futej K.O., Thevelein J.M., Sibirny A.A. Differences in glucose sensing and signaling for pexophagy between the baker’s yeast Saccharomyces cerevisiae and the methylotrophic yeast Pichia pastoris. Autophagy. 2008. 4(3): 381.https://doi.org/10.4161/auto.5634
  79. Nazarko V.Y., Thevelein J.M., Sibirny A.A. G-protein-coupled receptor Gpr1 and G-protein Gpa2 of cAMP-dependent signaling pathway are involved in glucose-induced pexophagy in the yeast Saccharomyces cerevisiae. Cell Biol. Int. 2008. 32(5): 502.https://doi.org/10.1016/j.cellbi.2007.11.001
  80. Zhang P., Zhang W., Zhou X,. Bai P., Cregg J.M., Zhang Y. Catabolite repression of Aox in Pichia pastoris is dependent on hexose transporter PpHxt1 and pexophagy. Appl. Environ. Microbiol. 2010. 76(18): 6108.https://doi.org/10.1128/AEM.00607-10
  81. Polupanov A.S., Nazarko V.Y., Sibirny A.A. Gss1 protein of the methylotrophic yeast Pichia pastoris is involved in glucose sensing, pexophagy and catabolite repression. Int. J. Biochem. Cell Biol. 2012. 44(11): 1906.https://doi.org/10.1016/j.biocel.2012.07.017
  82. Polupanov A.S., Sibirny A.A. Cytoplasmic extension peptide of Pichia pastoris glucose sensor Gss1 is not compulsory for glucose signalling. Cell Biol. Int. 2014. 38(2): 172.https://doi.org/10.1002/cbin.10189
  83. Stasyk O.V., Stasyk O.G., Komduur J., Veenhuis M., Cregg J.M., Sibirny A.A. A hexose transporter homologue controls glucose repression in the methylotrophic yeast Hansenula polymorpha. J. Biol. Chem. 2004. 279(9): 8116.https://doi.org/10.1074/jbc.M310960200
  84. Yuan W., Tuttle D.L., Shi Y.J., Ralph G.S., Dunn W.A. Jr. Glucose-induced microautophagy in Pichia pastoris requires the alpha-subunit of phosphofructokinase. J. Cell Sci. 1997. 110(16): 1935.
  85. Herrero P., Flores L., de la Cera T., Moreno F. Functional characterization of transcriptional regulatory elements in the upstream region of the yeast GLK1 gene. Biochem. J. 1999. 343(2): 319.https://doi.org/10.1042/bj3430319
  86. Liesen T., Hollenberg C.P., Heinisch J.J. ERA, a novel cis-acting element required for autoregulation and ethanol repression of PDC1 transcription in Saccharomyces cerevisiae. Mol. Microbiol. 1996. 21(3): 621.https://doi.org/10.1111/j.1365-2958.1996.tb02570.x
  87. Saliola M., Getuli C., Mazzoni C., Fantozzi I., Falcone C. A new regulatory element mediates ethanol repression of KlADH3, a Kluyveromyces lactis gene coding for a mitochondrial alcohol dehydrogenase. FEMS Yeast Res. 2007. 7(5): 693.https://doi.org/10.1111/j.1567-1364.2007.00250.x
  88. Tolstorukov I.I., Efremov B.D., Benevolensky S.V., Titorenko V.I., Sibirny A.A. Mutants of methylotrophic yeast Pichia pinus defective in C2 metabolism. Yeast. 1989. 5(3): 179.https://doi.org/10.1002/yea.320050307
  89. Sibirny A.A., Titorenko V.I., Efremov B.D., Tolstorukov I.I. Multiplicity of mechanisms of carbon catabolite repression involved in the synthesis of alcohol oxidase in the methylotrophic yeast Pichia pinus. Yeast. 1987. 3(4): 233.https://doi.org/10.1002/yea.320030404
  90. Sibirny A.A., Titorenko V.I., Teslyar G.E., Petrushko V.I., Kucher M.M. Methanol and ethanol utilization in methylotrophic yeast Pichia pinus wild-type and mutant strains. Arch. Microbiol. 1991. 156(6): 455.
  91. Sibirny A.A. Genetic control of methanol and ethanol metabolism in the yeast Pichia pinus. In: Proc. 6th Int. Symp. on Genetics of Industrial Microorganisms. (Strasbourg: Soc. Franc. Microbiol., 1990). V. l. P. 545–554.
  92. Jiang P., Mizushima N. Autophagy and human diseases. Cell Res. 2014. 24(1): 69.https://doi.org/10.1038/cr.2013.161
  93. Lynch-Day M.A., Mao K., Wang K., Zhao M., Klionsky D.J. The role of autophagy in Parkinson’s disease. Cold Spring Harb. Perspect. Med. 2012. 2(4): a009357.https://doi.org/10.1101/cshperspect.a009357
  94. Wolfe D.M., Lee J.H., Kumar A., Lee S., Orenstein S.J., Nixon R.A. Autophagy failure in Alzheimer’s disease and the role of defective lysosomal acidification. Eur. J. Neurosci. 2013. 37(12): 1949.https://doi.org/10.1111/ejn.12169
  95. Cortes C.J., La Spada A.R. The many faces of autophagy dysfunction in Huntington’s disease: from mechanism to therapy. Drug Discov. Today. 2014. 19(7): 963.https://doi.org/10.1016/j.drudis.2014.02.014
  96. White E. The role for autophagy in cancer. J. Clin. Invest. 2015. 125(1): 42.https://doi.org/10.1172/JCI73941
  97. Gasparre G., Romeo G., Rugolo M., Porcelli A.M. Learning from oncocytic tumors: why choose inefficient mitochondria? Biochim. Biophys. Acta. 2011. 1807(6): 633.https://doi.org/10.1016/j.bbabio.2010.08.006
  98. Cebollero E., Gonzalez R. Autophagy: from basic research to its application in food biotechnology. Biotechnol Adv. 2007. 25(4): 396.https://doi.org/10.1016/j.biotechadv.2007.03.004
  99. Abeliovich H., Gonzalez R. Autophagy in food biotechnology. Autophagy. 2009. 5(7): 925.https://doi.org/10.4161/auto.5.7.9213
  100. Kurylenko O., Semkiv M., Ruchala J., Hryniv O., Kshanovska B., Abbas C., Dmytruk K., Sibirny A. New approaches for improving the production of the 1st and 2nd generation ethanol by yeast. Acta Biochim. Pol. 2016. 63: 31.https://doi.org/10.18388/abp.2015_1156