Visn. Nac. Akad. Nauk Ukr. 2021.(1): 53-61
https://doi.org/10.15407/visn2021.01.053

Alina V. Savotchenko
Bogomoletz Institute of Physiology of the National Academy of Science of Ukraine, Kyiv, Ukraine
ORCID: https://orcid.org/0000-0001-5276-430X

BLOOD-BRAIN BARRIER DISFUNCTION AND DEVELOPMENT OF EPILEPTIC SEIZURES
According to the scientific report at the meeting of the Presidium of the NAS of Ukraine, December 23, 2020

Blood-brain barrier dysfunction (BBB) is an important factor to the development of epilepsy and its behavioral comorbidities. Disruption of its integrity is accompanied by the ingress of blood components, including thrombin, into the cerebrospinal fluid. The effect of thrombin is mediated mainly through its major receptor, protease-activated receptors 1 (PAR1). Using lithium-pilocarpine model of seizures, we show that downregulation of PAR1 activity reduces anxiety and aggressive behavior in epileptic rats and restores distinct forms of hippocampal synaptic plasticity in experimental model of temporal-lobe epilepsy. Taken together, our data suggest that PAR1-signaling promotes the development of acquired epilepsy. PAR1 may be a new potential target for the treatment of this disorder and associated behavioral pathologies.
Keywords: blood-brain barrier, temporal-lobe epilepsy, hippocampus, thrombin, synaptic plasticity.

Full text (PDF)

 

REFERENCES

  1. Semenikhina M., Bogovyk R., Fedoriuk M., Stasyshyn O., Savotchenko A., Isaeva E. Protease-activated receptor 1 inhibition does not affect the social behavior after status epilepticus in rat. Fiziol Zh. 2018. 64(6): 17–22. DOI: https://doi.org/10.15407/fz64.06.017
  2. Fabene P.F., Navarro Mora G., Martinello M., Rossi B., Merigo F., Ottoboni L., Bach S., Angiari S., Benati D., Chakir A., Zanetti L., Schio F., Osculati A., Marzola P., Nicolato E., Homeister J.W., Xia L., Lowe J.B., McEver R.P., Osculati F., Sbarbati A., Butcher E.C., Constantin G. A role for leukocyte-endothelial adhesion mechanisms in epilepsy. Nat. Med. 2008. 14(11): 1377–1383. DOI: https://doi.org/10.1038/nm.1878
  3. Marchi N., Granata T., Freri E., Ciusani E., Ragona F., Puvenna V., Teng Q., Alexopolous A., Janigro D. Efficacy of anti-inflammatory therapy in a model of acute seizures and in a population of pediatric drug resistant epileptics. PLoS One. 2011. 6: e18200. DOI: https://doi.org/10.1371/journal.pone.0018200
  4. Van Vliet E.A., Otte W.M., Wadman W.J., Aronica E., Kooij G., De Vries H.E., Dijkhuizen R.M., Gorter J.A. Blood-brain barrier leakage after status epilepticus in rapamycin- treated rats II: Potential mechanisms. Epilepsia. 2016. 57(1): 70–78. DOI: https://doi.org/10.1111/epi.13245
  5. Isaev D., Lushnikova I., Lunko O., Zapukhliak O., Maximyuk O., Romanov A., Skibo G.G., Tian C., Holmes G.L., Isaeva E. Contribution of protease-activated receptor 1 in status epilepticus-induced epileptogenesis. Neurobiol. Dis. 2015. 78: 68–76. DOI: https://doi.org/10.1016/j.nbd.2015.03.026
  6. Macfarlane S.R., Seatter M.J., Kanke T., Hunter G.D., Plevin R. Proteinase-activated receptors. Pharmacol. Rev. 2001. 53(2): 245–282.
  7. Isaeva E., Hernan A., Isaev D., Holmes G.L. Thrombin facilitates seizures through activation of persistent sodium current. Ann. Neurol. 2012. 72: 192–198. DOI: https://doi.org/10.1002/ana.23587
  8. Racine R.J. Modification of seizure activity by electrical modification of after-discharge. Electroencephalogr. Clin. Neurophysiol. 1972. 32(3): 281–294. DOI: https://doi.org/10.1016/0013-4694(72)90176-9
  9. Semenikhina M., Bogovik R., Fedoryuk M., Lunko О., Savotchenko A., Isaeva E. Pharmacological blockade of protease-activated receptors 1 normalizes emotional excitability of rats in the latent stage of the formation of temporal lobe epilepsy. Fiziol. Zh. 2019. 65(3): 7–11. DOI: https://doi.org/10.15407/fz65.03.007
  10. Lunko O.O., Bogovyk R.I., Fedoriuk M.P., Semenets G.S., Isaeva E.V. The protease-activated receptor 1 inhibition during epileptogenesis does not alter behavioral excitability in rats. Fiziol. Zh. 2018. 64(2): 12–18. DOI: https://doi.org/10.15407/fz64.02.012
  11. Temkin N.R., Dikmen S.S., Anderson G.D., Wilensky A.J., Holmes M.D., Cohen W., Newell D.W., Nelson P., Awan A. Valproate therapy for prevention of posttraumatic seizures: a randomized trial. J. Neurosurg. 1999. 91(4): 593–600. DOI: https://doi.org/10.3171/jns.1999.91.4.0593
  12. Semenikhina M., Bogovyk R., Fedoriuk M., Nikolaienko O., Alkury L.T., Savotchenko A., Krishtal O., Isaeva E. Inhibition of protease-activated receptor 1 ameliorates behavioral deficits and restores hippocampal synaptic plasticity in a rat model of status epilepticus. Neurosci. Lett. 2019. 692: 64–68. DOI: https://doi.org/10.1016/j.neulet.2018.10.058
  13. Savotchenko A., Semenikhina M., Krasnianchuk I., Bogovyk R., Honcharova A., Isaeva E. Behavioral consequences of enterobiasis in rats. Fiziol. Zh. 2019. 65(1): 20-25. DOI: https://doi.org/10.15407/fz65.01.020
  14. Inostroza M., Cid E., Menendez de la Prida L., Sandi C. Different emotional disturbances in two experimental models of temporal Lobe Epilepsy in rats. PLoS One. 2012. 7. DOI: https://doi.org/10.1371/journal.pone.0038959
  15. Bogovyk R., Lunko O., Fedoriuk M., Isaev D., Krishtal O., Holmes G.L., Isaeva E. Effects of protease-activated receptor 1 inhibition on anxiety and fear following status epilepticus. Epilepsy Behav. 2017. 67(2): 66–69. DOI: https://doi.org/10.1016/j.yebeh.2016.11.003
  16. Wang J., Jin H., Hua Y., Keep R.F., Xi G. Role of protease-activated receptor-1 in brain injury after experimental global cerebral ischemia. Stroke. 2012. 43(9): 2476–2482. DOI: https://doi.org/10.1161/STROKEAHA.112.661819
  17. Itzekson Z., Maggio N., Milman A., Shavit E., Pick C.G., Chapman J. Reversal of trauma-induced amnesia in mice by a thrombin receptor antagonist. J. Mol. Neurosci. 2014. 53: 87–95. DOI: https://doi.org/10.1007/s12031-013-0200-8
  18. Curia G., Lucchi C., Vinet J., Gualtieri F., Marinelli C., Torsello A., Costantino L., Biagini G. Pathophysiogenesis of mesial temporal lobe epilepsy: is prevention of damage antiepileptogenic. Curr. Med. Chem. 2014. 21(6): 663–688. DOI: https://doi.org/10.2174/0929867320666131119152201
  19. Savotchenko A., Romanov A., Isaev D., Maximyuk O., Holmes G., Isaeva E. Neuraminidase inhibition primes short-term depression and suppresses long-term potentiation of synaptic transmission in the rat hippocampus. Neural Plast. 2015. Article ID 908190. DOI: https://doi.org/10.1155/2015/908190
  20. Pena F., Bargas J., Tapia R. Paired pulse facilitation is turned into paired pulse depression in hippocampal slices after epilepsy induced by 4-aminopyridine in vivo. Neuropharmacology. 2002. 42(6): 807–812. DOI: https://doi.org/10.1016/S0028-3908(02)00024-2
  21. El-Hassar L., Esclapez M., Bernard C. Hyperexcitability of the CA1 hippocampal region during epileptogenesis. Epilepsia. 2007. 48(5): 131–139. DOI: https://doi.org/10.1111/j.1528- 1167.2007.01301.x
  22. Schubert M., Siegmund H., Pape H.-C., Albrecht D. Kindling-induced changes in plasticity of the rat amygdala and hippocampus. Learn. Mem. 2005. 12(5): 520–526. DOI: https://doi.org/10.1101/lm.4205
  23. Reid I.C., Stewart C.A. Seizures, memory and synaptic plasticity. Seizure. 1997. 6(5): 351–359. DOI: https://doi.org/10.1016/S1059-1311(97)80034-9
  24. Bo T., Jiang Y., Cao H., Wang J., Wu X. Long-term effects of seizures in neonatal rats on spatial learning ability and N-methyl-D-aspartate receptor expression in the brain. Brain Res. Dev. Brain Res. 2004. 152(2): 137–142. DOI: https://doi.org/10.1016/j.devbrainres.2004.06.011
  25. Leung L.S., Wu C.P. Kindling suppresses primed-burst-induced long-term potentiation in hippocampal CAI. Neuroreport. 2003.14(2): 211–214. DOI: https://doi.org/10.1097/01.wnr.0000054957.21656.44
  26. Beck H., Goussakov I.V., Lie A., Helmstaedter C., Elger C.E. Synaptic plasticity in the human dentate gyrus. J. Neurosci. 2000. 20(18): 7080–7086. DOI: https://doi.org/10.1523/JNEUROSCI.20-18-07080.2000
  27. Arai T., Miklossy J., Klegeris A., Quo J.P., McGeer P.L. Thrombin and prothrombin are expressed by neurons and glial cells and accumulate in neurofibrillary tangles in Alzheimer disease brain. J. Neuropathol. Exp. Neurol. 2006. 65(1): 19–25. DOI: https://doi.org/10.1097/01.jnen.0000196133.74087.cb
  28. Striggow F., Riek-Burchardt M., Kiesel A., Schmidt W., Henrich-Noack P., Breder J., Krug M., Reymann K.G., Reiser G. Four different types of protease-activated receptors are widely expressed in the brain and are up-regulated in hippocampus by severe ischemia. Eur. J. Neurosci. 2001. 14(4): 595–608. DOI: https://doi.org/10.1046/j.0953-816x.2001.01676.x
  29. Wang H., Ubl J.J., Reiser G. Four subtypes of protease-activated receptors, co-expressed in rat astrocytes, evoke different physiological signaling. Glia. 2002. 37(1): 53–63. DOI: https://doi.org/10.1002/glia.10012
  30. Garcia P.S., Ciavatta V.T., Fidler J.A., Woodbury A., Levy J.H., Tyor W.R. Concentration-Dependent Dual Role of Thrombin in Protection of Cultured Rat Cortical Neurons. Neurochem. Res. 2015. 40(9): 2220–2229. DOI: https://doi.org/10.1007/s11064-015-1711-1
  31. Turgeon V.L., Milligan C.E., Houenou L.J. Activation of the protease-activated thrombin receptor (PAR)-1 induces motoneuron degeneration in the developing avian embryo. J. Neuropathol. Exp. Neurol. 1999. 58(5): 499–504. DOI: https://doi.org/10.1097/00005072-199905000-00009
  32. Wang H., Ubl J.J., Stricker R., Reiser G. Thrombin (PAR-1)-induced proliferation in astrocytes via MAPK involves multiple signaling pathways. Am. J. Physiol. Cell Physiol. 2002. 283(11): 1351–1364. DOI: https://doi.org/10.1152/ajpcell.00001.2002
  33. Gingrich M.B., Junge C.E., Lyuboslavsky P., Traynelis S.F. Potentiation of NMDA receptor function by the serine protease thrombin. J. Neurosci. 2000. 20(12): 4582–4595. DOI: https://doi.org/10.1523/JNEUROSCI.20-12-04582.2000
  34. Almonte A.G., Qadri L.H., Sultan F.A., Watson J.A., Mount D.J., Rumbaugh G., Sweatt J.D. Protease-activated receptor-1 modulates hippocampal memory formation and synaptic plasticity. J. Neurochem. 2013. 124(1): 109–122. DOI: https://doi.org/10.1111/jnc.12075
  35. Lee C.J., Mannaioni G., Yuan H., Woo D.H., Gingrich M.B., Traynelis S.F. Astrocytic control of synaptic NMDA receptors. J. Physiol. 2007. 581(3): 1057–1081. DOI: https://doi.org/10.1113/jphysiol.2007.130377
  36. Duan Z.-Z., Zhang F., Li F.-Y., Luan Y.-F., Guo P., Li Y.-H., Liu Y., Qi S.-H. Protease activated receptor 1 (PAR1) enhances Src-mediated tyrosine phosphorylation of NMDA receptor in intracerebral hemorrhage (ICH). Sci. Rep. 2016. 6: 29246. DOI: https://doi.org/10.1038/srep29246
  37. Nicoll R.A., Malenka R.C. Expression mechanisms underlying NMDA receptor- dependent long-term potentiation. Ann. N. Y. Acad. Sci. 1999. 868(1): 515–525. DOI: https://doi.org/10.1111/j.1749-6632.1999.tb11320.x