Visn. Nac. Akad. Nauk Ukr. 2020.(6): 38-42

Vasyl V. Beshley
Pidstryhach Institute for Applied Problems in Mechanics and Mathematics, NAS Ukraine, Lviv

According to the scientific report at the meeting of the Presidium of NAS of Ukraine, March 11, 2020

Emission caused by particles accelerated on the shock wave in supernova remnants (SNRs) is a source of information about the kinetics of accelerated particles and morphology of objects. Analysis of spectral radiation is one of sources for investigation of particle acceleration. Development of observational astronomy allowed the production of surface brightness distribution maps of SNRs with good resolution in all electromagnetic domains from radio to gamma-rays. The availability of such data requires the construction of models for simulations of the surface brightness distribution maps of SNRs.
Keywords: shock wave, supernova remnants, acceleration of elementary particles, emission of acceleration particles, gamma-rays, maps of the surface brightness distribution.

 Language of article: ukrainian

Full text (PDF)


  1. Taylor G. The formation of a blast wave by a very intense explosion I. Theoretical discussion. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences. 1950. 201(1065): 159–174. DOI:
  2. Sedov L.I. Propagation of strong shock waves. Journal of Applied Mathematics and Mechanics. 1946. 10: 241–250.
  3. Klymyshyn I.A. Shock waves in star shells. Moscow: Fizmatgiz, 1984. (in Russian).
  4. Jones F.C., Ellison D.C. The plasma physics of shock acceleration. Space Science Reviews. 1991. 58: 259–346. DOI:
  5. Petruk O. Particle acceleration at shocks. Stationary solutions of the kinetic equation. Journal of Physical Studies. 2014. 18(1): 1901(1–18) (in Ukrainian).
  6. Aharonian F.A., Akhperjanian A., Aye K. et al. High-energy particle acceleration in the shell of a supernova remnant. Nature. 2004. 432 (7013): 75–77. DOI:
  7. Rothenflug R., Ballet J., Dubner G., Giacani E., Decourchelle A., Ferrando P. Geometry of the non-thermal emission in SN 1006. Azimuthal variations of cosmic-ray acceleration. Astronomy & Astrophysics. 2004. 425(1): 121R. DOI:
  8. Acero F., Aharonian F., Akhperjanianet A.G. et al. First detection of VHE γ-rays from SN 1006 by HESS. Astronomy & Astrophysics. 2010. 516: A62. DOI:
  9. Petruk O., Kuzyo T., Beshley V. Post-adiabatic supernova remnants in an interstellar magnetic field: parallel and perpendicular shocks. Monthly Notices of the Royal Astronomical Society. 2016. 456(3): 2343–2353. DOI:
  10. Petruk O., Beshley V., Bocchino F., Orlando S. Some properties of synchrotron radio and inverse-Compton gamma-ray images of supernova remnants. Monthly Notices of the Royal Astronomical Society. 2009. 395(3): 1467–1475. DOI:
  11. Beshley V., Petruk O., Hadronic γ-ray images of Sedov supernova remnants. Monthly Notices of the Royal Astronomical Society. 2012. 419(2): 1421–1430. DOI:
  12. Orlando S., Bocchino F., Reale F., Peres G., Petruk O. On the origin of asymmetries in bilateral supernova remnants. Astronomy & Astrophysics. 2007. 470(3): 927–939. DOI:
  13. Bocchino F., Orlando S., Miceli M., Petruk O. Constraints on the local interstellar magnetic field from non-thermal emission of SN1006. Astronomy & Astrophysics. 2011. 531: A129. DOI:
  14. Mignone A., Bodo G., Massaglia S., Matsakos T., Tesileanu O., Zanni C., Ferrari A. PLUTO: A Numerical Code for Computational Astrophysics. The Astrophysical Journal Supplement Series. 2007. 170(1): 228. DOI: